Alumno: JOSÉ LUIS FILOMENO MARTÍNEZ Docente: GÉNESIS LETICIA MERIDA SANCHEZ.

Slides:



Advertisements
Presentaciones similares
Modelo Atómico de Bohr Juan Pablo Ospina Cód Grupo 8 No. 29.
Advertisements

MODELO ATÓMICO DE BOHR Javier Ricardo Velandia Cabra
Historia. Modelos atómicos.
ATOMO DE BOHR JAVIER DE LUCAS.
ATOMO DE BOHR JAVIER DE LUCAS.
MODELO ATOMICO DE BORH.
Modelo atómico de Bohr.
MODELO ATÓMICOS DE BOHR
Estructura Atómica Mecanica Cuántica y Estructura Atómica
Modelos atómicos.
Estructura de la materia
Modelo atómico de Bohr h rn = n 2mv
Después que Rutherford descubriera la naturaleza nuclear del átomo, los científicos pensaron en el átomo como un “sistema solar microscópico” en el que.
Fundamentos de Física Moderna Modelos Atómico de Bohr para el átomo de hidrógeno Nombre: Camilo Andrés Vargas Jiménez G2E32Camilo- 10/06/2015.
Ross Alejandra Silva Torres Ingeniería eléctrica física moderna
UNIVERSIDAD NACIONAL DE COLOMBIA SEDE BOGOTÁ
UN Fabián Andrés Peña Guerrero G2E25 19/06/2015
FÍSICA DE SEMICONDUCTORES Modelos Atómicos
Presentado por: Andrés Camilo Vargas Páramo G2E
NIVELES DE ENERGIA. Para poder entender los niveles de energía debemos de comprender un poco el modelo atómico de Bohr.
Andrés Camilo Suárez Leaño 17/06/2015
UN JUAN F. QUINTERO DUARTE G2E26.  Los electrones describen órbitas circulares en torno al núcleo del átomo sin irradiar energía. La causa de que el.
UN Luis Alfredo Gutiérrez payanene -g1e12luis
Modelos atómicos hasta el actual
Jhoan Manuel Martínez Ruiz Universidad Nacional de Colombia
PROFESOR CRISTIAN LEDEZMA CARVAJAL
MODELO ATÓMICO DE BORH.
* Descubrimiento del núcleo atómico
MODELOS ATÓMICOS Nefer Giovanni García Gómez
Ing. Ana Lilia Flores E. Química 1 Tema: Modelo atómico de Bohr.
MODELO ATÓMICO DE DEMÓCRITO. CARACTERÍSTICAS Los átomos son eternos, indivisibles, homogéneos, incompresibles e invisibles. Los átomos se diferencian.
15 P Configuración electrónica para el elemento Fosforo con 15 electrones. 2p 6 3s 2 2s 2 1s 2 Periodo: 3 Grupo :5A 3p 3 Periodo lo indica el máximo nivel.
Números Cuánticos Presentación realizada por: Alfredo Velásquez Márquez Profesor de Carrera de la División de Ciencias Basicas de la Facultad de Ingeniería.
LA ESTRUCTURA ATÓMICA. Teoría Atómica En 1808, John Dalton estableció las hipótesis sobre las que fundó su teoría atómica: a) Los elementos están formados.
FÍSICA 7. Física Cuántica. 1.Dificultades de la Física Clásica. 2.Cuantización de la energía; fotones. 3.Dualidad onda-corpúsculo; Hipótesis de De Broglie.
Cap. 2: Electrones en Atomos Universidad Nacional Experimental del Táchira (UNET) San Cristóbal 2007 Química General Departamento de Química.
MODELOS ATÓMICOS La representación de un átomo a través de los siglos.
MODELOS ATOMICOS Karola rodriguez.- a Max Corrales.- a Scarlet Peralta.- a
Tema 1. Estructura de la materia 1. Modelos atómicos 2. Naturaleza de la luz 3. Espectros atómicos y modelo de Bohr 4. Modelo mecanocuántico - De Broglie.
Créditos: M en C Alicia Cea Bonilla
UNIDAD Nº 6.- ELEMENTOS DE FÍSICA CUÁNTICA
MODELO DE BOHR DEL ÁTOMO DE HIDRÓGENO
Números cuánticos Estos números se derivan de la resolución de la ecuación de Schrödinger para el átomo de hidrógeno. Para describir un orbital se necesitan.
2.1 ATOMO DE BOHR 1.
MODELO ATÓMICO DE THOMSON
ESTRUCTURA ATÓMICA.
Modelo atómico de Niels Bohr ( ) Corrigió los errores de Rutherford. El físico danés Niels Bohr propuso en 1913 un nuevo modelo atómico.
NIELS BOHR. Copenhague Copenhague Físico danés, uno de los padres de la física cuántica. Creador, en 1913, del modelo atómico que lleva su.
El átomo..
Química U.1 Estructura atómica. Sistema periódico
Prof. Lic. Sergio Rodríguez Bonet QUÍMICA INORGÁNICA AVANZADA Universidad Nacional de Asunción Facultad de Ciencias Exactas y Naturales Departamento de.
MODELOS ATÓMICOS FÍSICA Y QUÍMICA EN LA RED. Blog
ESTRUCTURA ATÓMICA.
Unida Nº1: “Materia y Energía” Tema: Modelos atómicos
NÚMEROS CUÁNTICOS Y CONFIGURACIÓN ELECTRÓNICA
MODELOS ATÓMICOS.
Números Cuánticos.
ÁTOMOS.
Grafito diamante.
Postulados de Bohr Un sistema atómico solo puede
Neils Bohr
Estructura electrónica del átomo
UNIDAD 1: EL ÁTOMO Y EL SISTEMA PERIÓDICO
Modelo atómico de Bohr AE 4: Explicar los fenómenos básicos de emisión y absorción de luz, aplicando los modelos atómicos pertinentes.
NIELS BOHR.
MODELO ATÓMICOS DE BOHR. MODELO DE RUTHERFORD Y FÍSICA CLÁSICA En 1911 Rutherford plantea su modelo atómico a través del cual logra explicar ciertos fenómenos.
Modelo mecano-cuántico. MODELO MECANO-CUÁNTICO  Es el actual modelo: este modelo se expuso por vez primera en 1925 por Schrodinger y Heisenberg.
CONTENIDOS  Números cuánticos.  Configuración electrónica.
Química U.1 Estructura atómica. Sistema periódico
Partículas fundamentales + - e/m = X10 8 coulom/gram + -
Transcripción de la presentación:

Alumno: JOSÉ LUIS FILOMENO MARTÍNEZ Docente: GÉNESIS LETICIA MERIDA SANCHEZ

En 1913, Niels Bohr, físico danés, propuso una teoría que se baso en el espectro del átomo de hidrogeno y uso el concepto de la teoría cuántica para explicar las configuraciones electrónicas de los átomos. De acuerdo con esta teoría, el electrón del hidrogeno puede existir solamente en ciertas orbitas esféricas (o capas, o niveles de energía) las cuales están arregladas concéntricamente alrededor del núcleo. Bohr dijo que los electrones se movían alrededor del núcleo en varios niveles de energía, a veces como lo hacen los planetas alrededor del sol. La idea de un diminuto sistema planetario en el átomo fue aceptada. Sin embargo, esta analogía no es correcta debido a que el núcleo y el electrón son partículas con cargas eléctricas opuestas, y el electrón al moverse alrededor del núcleo a una gran velocidad, debía perder energía, y en consecuencia se acercaría a el núcleo describiendo orbitas cada vez mas pequeñas.

Los electrones que estaban fuera del núcleo de los átomos solo podían encontrarse en determinados y definidos niveles de energía, es decir, en los átomos existen niveles de energía electrónica que están cuantificados. Cuando un electrón se mueve en cualquier orbita tiene una energía definida, característica de la orbita.

Mientras los electrones se mantienen en determinados niveles de energía electrónica, no ganan ni pierden energía. Estos niveles estables de energía son llamados estados estacionarios del átomo. Sólo son posibles aquellas órbitas en las que el electrón tiene un momento angular que es múltiplo entero de h/(2 · p). Puesto que el momento angular se define como L = mvr, tendremos: mvr = n · h/(2 · p) -> r = a 0 · n 2 donde: m: masa del electrón = 9.1 · kg v: velocidad del electrón r: radio de la órbita que realiza el electrón alrededor del núcleo h: constante de Planck n: número cuántico = 1, 2, 3... a 0 : constante = 0,529 Å Así, el Segundo Postulado nos indica que el electrón no puede estar a cualquier distancia del núcleo, sino que sólo hay unas pocas órbitas posibles, las cuales vienen definidas por los valores permitidos para un parámetro que se denomina número cuántico, n.

Un electrón puede saltar a un nivel mayor energía cuando el átomo absorbe energía. Cuando un electrón desciende o cae a un nivel de menor energía, el átomo emite energía. El electrón no puede detenerse entre estos niveles. Como estos saltos solo pueden ocurrir entre niveles definidos de energía, están involucradas cantidades definidas de energía. La energía liberada al caer el electrón desde una órbita a otra de menor energía se emite en forma de fotón, cuya frecuencia viene dada por la ecuación de Planck: E a - E b = h · v Así, cuando el átomo absorbe (o emite) una radiación, el electrón pasa a una órbita de mayor (o menor) energía, y la diferencia entre ambas órbitas se corresponderá con una línea del espectro de absorción (o de emisión).

Las órbitas permitidas tienen valores discretos o cuantiados del momento angular orbital L de acuerdo con la siguiente ecuación: Donde n = 1,2,3,… es el número cuántico angular o número cuántico principal. La cuarta hipótesis asume que el valor mínimo de n es 1. Este valor corresponde a un mínimo radio de la órbita del electrón de nm. A esta distancia se le denomina radio de Bohr. Un electrón en este nivel fundamental no puede descender a niveles inferiores emitiendo energía. Se puede demostrar que este conjunto de hipótesis corresponde a la hipótesis de que los electrones estables orbitando un átomo están descritos por funciones de onda estacionarias. Un modelo atómico es una representación que describe las partes que tiene un átomo y como están dispuestas para formar un todo.

En el modelo original de Bohr, se precisa un único parámetro (el número cuántico principal, n), que se relaciona con el radio de la órbita circular que el electrón realiza alrededor del núcleo, y también con la energía total del electrón. Los valores que puede tomar este número cuántico son los enteros positivos: 1, 2, 3... Sin embargo, pronto fue necesario modificar el modelo para adaptarlo a los nuevos datos experimentales, con lo que se introdujeron otros tres números cuánticos para caracterizar al electrón: · Número cuántico secundario o azimutal (l) · Número cuántico magnético (m) · Número cuántico de espín (s)

En 1916, Sommerfeld modificó el modelo de Bohr considerando que las órbitas del electrón no eran necesariamente circulares, sino que también eran posibles órbitas elípticas; esta modificación exige disponer de dos parámetros para caracterizar al electrón. Una elipse viene definida por dos parámetros, que son los valores de sus semiejes mayor y menor. En el caso de que ambos semiejes sean iguales, la elipse se convierte en una circunferencia. Así, introducimos el número cuántico secundario o azimutal (l), cuyos valores permitidos son: l = 0, 1, 2,..., n - 1 Por ejemplo, si n = 3, los valores que puede tomar l serán: 0, 1, 2

Indica las posibles orientaciones en el espacio que puede adoptar la órbita del electrón cuando éste es sometido a un campo magnético externo (efecto Zeemann). Valores permitidos: - l,..., 0,..., + l Por ejemplo, si el número cuántico secundario vale l = 2, los valores permitidos para m serán: - 2, -1, 0, 1, 2 El efecto Zeemann se debe a que cualquier carga eléctrica en movimiento crea un campo magnético; por lo tanto, también el electrón lo crea, así que deberá sufrir la influencia de cualquier campo magnético externo que se le aplique. Indica el sentido de giro del electrón en torno a su propio eje. Puede tomar sólo dos valores: +1/2, -1/2.

El modelo de Bohr permitió explicar adecuadamente el espectro del átomo de hidrógeno, pero fallaba al intentar aplicarlo a átomos polielectrónicos y al intentar justificar el enlace químico. Además, los postulados de Bohr suponían una mezcla un tanto confusa de mecánica clásica y mecánica cuántica. El modelo no consigue explicar como los átomos individuales obran recíprocamente con otros átomos para formar los agregados de la sustancia que observamos.

materia/curso/materiales/atomo/modelos.htm atomico.shtml