PROPORCIONALIDAD 2º ESO

Slides:



Advertisements
Presentaciones similares
Magnitud Magnitud es todo aquello que puede ser medido o cuantificado.
Advertisements

PROPORCIONALIDAD Y PORCENTAJES
PROPORCIONALIDAD 2º ESO
Proporcionalidad 1. Magnitudes y medida 2. Razón y proporción
Tema 7 PROPORCIONALIDAD.
Unidad 3: PROPORCIONALIDAD.
FRACCIONES: Interpretación
Proporcionalidad en el cuerpo humano
Tema 6: Proporcionalidad
Walda Flores Nikole Jadrijevic María Paz Silva. En la siguiente presentación usted podrá apreciar lo que son las Proporciones, Razones y los Porcentajes,
Proporciones Razones Porcentajes Profesor: Sergio González.
PROPORCIONALIDAD 2º ESO
RAZONES Y PROPORCIONES
Proporcionalidad Numérica
Departamento de Ciencias
Aplicar la proporción en la resolución de problemas.
RAZONES Y PROPORCIONES
P ROPORCIONALIDAD 2º ESO. Razón : Es la división de 2 cantidades comparables Precio de productos mensurables:  4 kg de manzanas cuestan 3 €  Precio.
TEMA 1.
PROPORCIONALIDAD Y PROBLEMAS ARITMÉTICOS 2º ESO Jorge Benítez Zarza PROPORCIONALIDAD 2º ESO.
Entendida de manera genérica, como la comparación entre una parte y otra parte.
Regla de Tres.
PROPORCIONALIDAD Y PORCENTAJES Deberás hacer clic con el botón izquierdo del ratón para avanzar paso a paso.
Nivelación de Matemática Unidad III PORCENTAJES. El porcentaje o tanto por ciento (%), es una aplicación de las proporciones. Es una forma de comparar.
EL TANTO POR CIENTO Profesor José Mardones Cuevas E_Mail:
OPERACIONES CON FRACCIONES SUMAS Y RESTAS con = denominador con = denominador se suman los numeradores y se deja el mismo denominador 1º Se busca que los.
VENTA DE MACETEROS 1 $ $ $ RECONOCER MAGNITUDES DIRECTAMENTE PROPORCIONALES MARÍA PIZARRO ARAGONÉS RECONOCER MAGNITUDES DIRECTAMENTE.
MATEMÁTICAS 1º ESO FRACCIONES DPTO. MATEMÁTICAS - I.E.S. PABLO SERRANO.
RAZÓN, PROPORCIÓN Y PORCENTAJE
RAZONES, PROPORCIONES Y PORCENTAJE
Razón y proporción numérica
Matemática *Tema: Razones y proporciones. Problemas de aplicación. Porcentaje. *Alumno: Lautaro García Vitale. *Profesor: Cristian Ladjet. *Curso: 1 año.
Unidad 4: Razones y Proporciones
Razones, Proporciones y Porcentajes
Presentado por: Yuli Domínguez Portal Educa Panamá Grupo Océano.
Razones, Proporciones y porcentaje
Lucia Rojo Ballesteros 5ºB
Definición, propiedades y gráficos.
Apuntes de Matemáticas 3º ESO
Apuntes de Matemáticas 3º ESO
RAZONES Y PROPORCIONES
PROPORCIONALIDAD U. D. 3 * 4º ESO E. Angel Prieto Benito
Apuntes Matemáticas 2º ESO
INTEGRANTES: Cristian Espinoza. Karina Medina.
Temas: Razones, proporciones y porcentaje.
Magnitudes Directas e Inversamente Proporcionales
PROPORCIONALIDAD U. D. 3 * 4º ESO E. Angel Prieto Benito
Santillana Matemáticas Tema 11 Página 152 Santillana Matemáticas Tema 11 Página 153.
Razones Y Proporciones
Tema: Proporcionalidad y Porcentajes
RAZONES Y PROPORCIONES Razón Una razón es el cociente entre dos cantidades. En una razón, el numerador se llama antecedente y el denominador se llama consecuente.
1. Razones y proporciones 2. Repartos proporcionales y regla de tres
Cuando es directa o indirecta
MAGNITUDES PROPORCIONALES
PORCENTAJES Deberás hacer clic con el botón izquierdo del ratón para avanzar paso a paso.
ESTABLECIENDO RELACIONES DE PROPORCIONALIDAD Profesora: Manuela Vásquez C Profesora: Manuela Vásquez C 7º Año Básico 7º Año Básico.
Proporcionalidad Definición, propiedades y gráficos.
PROPORCIONALIDAD Instructor: M.G.T.I. Maribel Valenzuela Beltrán.
1 Números Índice del libro Los números reales
FRACCIONES: Interpretación
Apuntes Matemáticas 2º ESO
Apuntes de Matemáticas 3º ESO
REPASO TEMA 6 1. Hemos ido a comer toda la familia y nos ha costado 156€ más el 21% de IVA, ¿cuál ha sido el precio final? 2. ¿Son proporcionales? - Los.
MATEMÁTICAS 1º ESO FRACCIONES DPTO. MATEMÁTICAS - I.E.S. PABLO SERRANO.
MATEMÁTICAS 1º ESO FRACCIONES DPTO. MATEMÁTICAS - I.E.S. PABLO SERRANO.
Proporcionalidad 1. Magnitudes y medida 2. Razón y proporción
Apuntes Matemáticas 2º ESO
© GELV Proporcionalidad 1. Magnitudes y medida 2. Razón y proporción 3. Magnitudes proporcionales 4. Magnitudes directamente proporcionales. Regla de tres.
PROPORCIONALIDAD DIRECTA e INVERSA
ESTABLECIENDO RELACIONES DE PROPORCIONALIDAD Profesora: Manuela Vásquez C Profesora: Manuela Vásquez C 7º Año Básico 7º Año Básico.
Transcripción de la presentación:

PROPORCIONALIDAD 2º ESO Deberás hacer clic con el botón izquierdo del ratón para avanzar paso a paso

PROPORCIONALIDAD 2º ESO 1.-Razón de dos números Hasta ahora, el cociente indicado de dos números, por ejemplo 8 y 7, era una división, 8 : 7 y también una fracción, Vamos a añadir un nuevo significado a ese cociente. Es el de razón de dos números. Diremos que la razón de dos números es su cociente indicado. La expresaremos en forma de fracción y la leeremos “8 es a 7”. Ejemplo: La razón de 5 y 8 es “5 es a 8” En la práctica, podemos considerar a razón y fracción como cosas similares si los números son enteros. Por ello podremos decir que la razón entre 15 y 20 es o , que es la fracción equivalente irreducible Cuando aplicamos la razón de dos números a cantidades estamos expresando la relación que hay entre ellas. Es decir, si la razón de dos cantidades es significa que por cada 5 unidades de la primera hay 8 de la segunda. Las escalas de planos y mapas son, en realidad, razones entre las medidas del papel y del terreno.

PROPORCIONALIDAD 2º ESO 2.- Proporción Proporción es la igualdad de dos razones. Es decir, si dos razones son iguales, puedo escribir esa igualdad y a la expresión que resulta la llamamos proporción. Las razones y son iguales. Puedo escribir por tanto . Es una proporción y la leeremos: “1 es a 2 como 3 es a 6” Al igual que en las fracciones equivalentes, también en una proporción puede haber algún término desconocido. Lo calcularemos de la misma forma. Fíjate en los ejemplos:

3.- Magnitudes directamente proporcionales y PROPORCIONALIDAD 2º ESO 3.- Magnitudes directamente proporcionales y magnitudes inversamente proporcionales. Dos magnitudes son directamente proporcionales si al multiplicar (o dividir) una de ellas por un número, la otra también se multiplica (o divide) por el mismo número. Es decir: A doble en la primera magnitud, doble en la segunda A mitad en la primera magnitud, mitad en la segunda Ejemplos: . Número de personas que van en el autobús y recaudación del autobús . Tiempo que está encendida una bombilla y consumo de energía . Número de vacas que posee un granjero y pienso que gasta a la semana Dos magnitudes son inversamente proporcionales si al multiplicar una de ellas por un número, la otra se divide por el mismo número. Es decir: A doble en la primera magnitud, mitad en la segunda A mitad en la primera magnitud, doble en la segunda Ejemplos: . Número de obreros y tiempo en hacer un trabajo . Velocidad de un coche y tiempo en recorrer un trayecto . Número de vacas y tiempo que durará el pienso

PROPORCIONALIDAD 2º ESO 4.- Tablas de proporcionalidad y proporciones Propocionalidad directa Propocionalidad inversa Naranjas (kg) Precio (€) 2 4 3 6 8 5 10 Operarios Tiempo (h) 2 12 3 8 4 6 En la proporcionalidad directa, la razón de dos cantidades de una magnitud forma proporción con la razón de las cantidades correspondientes en la otra magnitud. En la proporcionalidad inversa, la razón de dos cantidades de una magnitud forma proporción con la razón inversa de las cantidades correspondientes en la otra magnitud.

PROPORCIONALIDAD 2º ESO 5.- Resolución de problemas de proporcionalidad Para resolver un problema de proporcionalidad debes seguir los siguientes pasos: 1º.- Determinar si la proporcionalidad entre las magnitudes es directa o inversa 2º.- Plantear la regla de tres señalando si es directa o inversa. Expresa las cantidades de cada magnitud en la misma unidad. 3º.- Escribir la proporción correspondiente 4º.- Hallar x Fíjate en los siguientes ejemplos. Para realizar cierto trabajo 10 obreros emplean 8 horas. ¿Cuánto les hubiera costado a 16 obreros? (Es inversa porque a doble de obreros mitad de tiempo) Nº obreros Tiempo (h) 10 --------- 8 16 --------- x I Solución 5 horas Si por 12 camisetas pago 96 €, ¿cuánto pagaré por 57 de esas camisetas? ( Es directa porque a doble de camisetas doble dinero) Camisetas Dinero(€) 12 ------- 96 57 -------- x D Solución 456 €

PROPORCIONALIDAD 2º ESO 6.- Problemas de proporcionalidad compuesta (1) Son problemas de proporcionalidad compuesta aquellos en los que intervienen más de dos magnitudes. Para resolver un problema de proporcionalidad compuesta debes seguir los siguientes pasos: 1º.- Plantea la regla de tres. Expresa las cantidades de la misma magnitud en la misma unidad. 2º.- Compara cada magnitud con la que lleva la x para ver si la proporcionalidad entre ellas es directa o inversa. Escribe D debajo de las directas e I debajo de las inversas. 3º.- Escribe una proporción de la siguiente forma: la primera razón con las cantidades de la magnitud donde está la x , la segunda razón con el producto de las razones de las otras magnitudes pero colocadas de la siguiente manera: si la relación es directa, de la misma forma que la de la incógnita, y si la relación es inversa en orden inverso respecto de la que tiene la incógnita. 4º.- Haz las operaciones y calcula x. Fíjate en el siguiente ejemplo.

PROPORCIONALIDAD 2º ESO 6.- Problemas de proporcionalidad compuesta (2) Un taller, trabajando 8 horas diarias, ha necesitado 5 días para fabricar 1 000 piezas. ¿Cuántos días tardará en hacer 3 000 piezas trabajando 10 horas diarias? Nº Piezas Días Horas día 1000 -------- 5 -------- 8 (A doble de piezas, doble de días necesarios) 3000 -------- x --------- 10 (A doble de horas diarias, mitad de días) D I Tardará 12 días