1. Relación estadística: correlación 2. Diagramas de dispersión o nube de puntos 3. Tablas de frecuencia simples o doble entrada 4. Distribuciones marginales.

Slides:



Advertisements
Presentaciones similares
Estadística bidimensional
Advertisements

ESTADÍSTICA BIDIMENSIONAL
Estadística bidimensional
Variables estadísticas bidimensionales
TABLAS DE DOBLE ENTRADA Anexo * BAD 1º BC
Variables estadísticas bidimensionales
Variables estadísticas bidimensionales
TEMA 3: Estadística Bidimensional.
@ Angel Prieto BenitoMatemáticas Aplicadas CS I1 U.D. 12 * 1º BCS ESTADÍSTICA BIDIMENSIONAL.
TEMA 3: Estadística Bidimensoional.
UNIDAD IV Regresión y correlación lineal
Tema 2: Estadística bidimensional
ESTADÍSTICA BIDIMENSIONAL
TABLAS DE DISTRIBUCIÓN DE FRECUENCIAS
Introducción a la estadística. ¿Qué es la estadística? La Estadística es la parte de las Matemáticas que se encarga del estudio de una determinada característica.
Tema 3: Distribuciones bidimensionales: Relación estre dos variables estadísticas Relación estadísca: Correlación Diagramas de dispersión.
TEMA 3. ESTADÍSTICA BIDIMENSIONAL. INDICE 1.- Relación estadística: correlación 2.- Diagramas de dispersión o nube de puntos 3.- Tablas de frecuencia.
TEMA 3: ESTADÍSTICA BIDIMENSIONAL. ÍNDICE: 1.- Relación estadística: correlación. 2.- Diagramas de dispersión o nube de puntos. 3.- Tablas de frecuencia.
TEMA 3: Estadística Bidimensional. ● Álvaro Fernández Romero y Luis Carlos Fernández herrezuelo.
CORRELACIÓN.  La correlación es la forma numérica en la que la estadística ha podido evaluar la relación de dos o más variables, es decir, mide la dependencia.
Tema 1:Introducción a la estadística La presentación de datos estadísticos constituye en sus diferentes modalidades uno de los aspectos de mas uso en la.
PROCESOS ESTOCÁSTICOS RESUMEN TEÓRICO INTEGRANTES :  ANDREINA ICAZA  MICHAEL ORELLANA  CARLOS PINOS  DIEGO SANTACRUZ  ALEXANDER CARDENAS  ARIANA.
Ing. VITELIO ASENCIOS TARAZONA. Dentro de los modelos causales o asociativos encontramos el análisis de regresión o regresión lineal, que es un método.
Control estadístico de procesos. Francisco Javier Miranda González CAPÍTULO 5.
1.3.1Media aritmética, geométrica y ponderada 1.3.2Mediana 1.3.2Moda Regresar.
ESTADÍSTICA BIDIMENSIONAL
Procedimiento completo de regresión múltiple
 Los datos que a continuación se presentan corresponden al número de llamadas telefónicas que un grupo de personas realiza durante el día. 0, 1, 2, 4,
Distribuciones bidimensionales: Relación entre dos variables estadísticas Tema 3:
ESTADÍSTICA BIDIMENSIONAL
TEMA 3: Distribuciones bidimensionales: relación entre dos variables estadísticas. Cristhian Lopez.
ESTADÍSTICA BIDIMENSIONAL
Introducción a los modelos econométricos
Medidas de Tendencia Central
ESTADÍSTICA UNIDIMENSIONAL
ESTADÍSTICA BIDIMENSIONAL
ESTADISTICA BIDIMENSIONAL
ESTADÍSTICA BIDIMENSIONAL
ESTADÍSTICA BIDIMENSIONAL
DISTRIBUCIONES BIDIMENSIONALES
Estadística: conceptos básicos y definiciones.
ESTADÍSTICA BIDIMENSIONAL
ESTADÍSTICA BIDIMENSIONAL
LA COVARIANZA Y EL COEFICIENTE DE CORRELACIÓN LINEAL DE PEARSON
ESTADÍSTICA BIDIMENSIONAL
estadistica
PREDICCIÓN Y ESTIMACIÓN
Variables estadísticas bidimensionales
CORRELACIÓN CAP 8 DE Peña y Romo.
REGRESÍON LINEAL SIMPLE
PROBABILIDAD Y ESTADÍSTICA
1. DISTRIBUCIONES BIDIMENSIONALES En las distribuciones bidimensionales a cada individuo le corresponden los valores de dos variables que se representan.
UNIVERSIDAD AUTÓNOMA DE CHIRIQUÍ VICERRECTORÍA DE INVESTIGACIÓN Y POSGRADO FACULTAD DE HUMANIDADES - ESCUELA DE EDUCACIÓN FÍSICA MAESTRÍA EN EDUCACIÓN.
Excel Estadístico Medidas de Dispersión.
ESTADÍSTICA BIDIMENSIONAL
Correlación Relación no lineal Relación lineal positiva Relación
Ecuación Explícita de la Recta
ESTADÍSTICA BIDIMENSIONAL
Dr. Carlomagno Araya Alpízar
ESTADÍSTICA BIDIMENSIONAL
Correlación Relación no lineal Relación lineal positiva Relación
MEDIDAS DE DISPERSION absolutas y relativas. INTRODUCCION La estadística es la ciencia que se encarga de recolectar, organizar, resumir y analizar datos.
PROBABILIDAD Y ESTADISTICA
DISTRIBUCIÓN DE FRECUENCIAS Una distribución de frecuencias o tabla de frecuencias es una ordenación en forma de tabla de los datos estadísticos, asignando.
1 Temario de la asignatura Introducción. Análisis de datos univariantes. Análisis de datos bivariantes. Series temporales y números índice. Probabilidad.
ESTADÍSTICA BIDIMENSIONAL
MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES I 1º BTO A
ESTADÍSTICA BIDIMENSIONAL
ESTADÍSTICA DESCRIPTIVA Mg. JHON FREDY SABI ROJAS.
Transcripción de la presentación:

1. Relación estadística: correlación 2. Diagramas de dispersión o nube de puntos 3. Tablas de frecuencia simples o doble entrada 4. Distribuciones marginales y condicionadas 5. Parámetros estadísticos bidimensionales 5.1. Medias y desviaciones típicas marginales 5.2. Covarianza 5.3. Coeficiente de correlación líneal 6. Rectas de regresión

Se habla de estadística bidimensional cuando dos variables X e Y están relacionadas estadísticamente cuando conocida la primera se puede estimar aproximadamente el valor de la segunda. Si representamos cada par de valores como las coordenadas de un punto, el conjunto de todos ellos se llama nube de puntos o diagrama de dispersión.

La correlación estadística determina la relación o dependencia que existe entre las dos variables que intervienen en una distribución bidimensional. En caso de que suceda, diremos que las variables están correlacionadas o que hay correlación entre ellas.

Una nube de puntos o diagrama de dispersión es la representación de cada par de valores de una distribución bidimensional (xi, yi) como las coordenadas de un punto. Sobre la nube de puntos puede trazarse una recta que se ajuste a ellos lo mejor posible, llamada recta de regresión.

Tabla bidimensional simple: Está formada por tres filas en las que se representan: En la primera de ellas los valores de la primera variable En la segunda fila los de la segunda variable En la tercera las correspondientes frecuencias. Está indicada para casos con pocos datos y pocos valores o ninguno repetidos. En caso de que las frecuencias sean iguales a uno, se puede omitir la fila o columna correspondiente a dichas frecuencias.

Tabla de doble entrada: Está formada por tantas filas como valores tengamos de la variable Y, así como tantas columnas como valores tengamos de la variable X, y una fila y una columna más para indicar los totales. -Está indicada para casos con bastantes datos, en los que para cada valor de una variable, existen varios valores de la otra. -En el caso de que alguna de las variables sea continua, aparecerán los distintos intervalos en la correspondiente fila o columna y otra fila o columna más con las marcas de clase de cada intervalo.

Distribuciones marginales: son distribuciones unidimensionales, que pueden analizarse mediante parámetros estadísticos, que nos informan del número de observaciones para cada una de las variables, prescindiendo de la información sobre las demás variables. -En el caso bidimensional hay dos (una para la x y otra para la y). -A partir de la tabla de correlación pueden construirse las distribuciones marginales, asignando a cada valor de la variable considerada su frecuencia

Distribuciones condicionadas : es el estudio de una de las variables para un determinado valor de la otra variable. - Esta relación puede ser de X/Y=yj, o bien, Y/X = xi, según condicionemos a un valor de una u otra variable. - Al tratarse de una variable unidimensional podremos estudiar todos sus parámetros estadísticos - Esto supone considerar únicamente una columna de la tabla de correlación (distribución de x condicionada a un valor de y) o una fila de la tabla (distribución de y condicionada a un valor de x).

Asociados a las distribuciones marginales y condicionadas podemos definir algunos estadísticos de tendencia central o dispersión.

La covarianza de una variable bidimensional es la media aritmética de los productos de las desviaciones de cada una de las variables respecto a sus medias respectivas. -Se representa por sxy o σxy. a covarianza indica el sentido de la correlación entre las variables -Si σxy > 0 la correlación es directa. -Si σxy < 0 la correlación es inversa.

El coeficiente de correlación lineal es el cociente entre la covarianza y el producto de las desviaciones típicas de ambas variables y se expresa mediante la letra r.Propiedades del coeficiente de correlación 1. No varía al hacer la escala de medición. 2. Su signo es el mismo que el de la covarianza. 3. Es un número real comprendido entre −1 y 1. −1 ≤ r ≤ 1 -Si toma valores cercanos a −1 la correlación es fuerte e inversa, -Si toma valores cercanos a 1 la correlación es fuerte y directa. -Si toma valores cercanos a 0, la correlación es débil. 4. Si r vale 1 o −1, los puntos de la nube están sobre la recta creciente o decreciente. Entre ambas variables habrá dependencia funcional.