ESTEQUIOMETÍA de las REACCIONES QUÍMICAS

Slides:



Advertisements
Presentaciones similares
Relaciones de masa en las reacciones químicas
Advertisements

Semana 09 CONCENTRACION DE LAS SOLUCIONES II
Medidas de Concentración de las Soluciones
TEMA 2 2DA PARTE ESTEQUIOMETRÍA.
Semana 11 Licda. Lilian Guzmán Melgar
CONCENTRACIÓN DE SOLUCIONES
SEMANA No. 6 ESTEQUIOMETRÍA.
REACCIONES QUÍMICAS y DISOLUCIONES QUÍMICA 2º bachillerato.
ESTEQUIOMETRÍA.
BALANCEO DE ECUACIONES QUÍMICAS
Disoluciones Químicas
A) Calcula la masa molecular relativa de las siguientes sustancias: Br2, CO2; P4, SO3 y C6H12O6 (glucosa). b) Halla la masa fórmula relativa de las siguientes.
MOLES – GRAMOS- NÚMERO DE PARTÍCULAS. T. Pilar Casafont.
Estequiometria y Soluciones.
Profesor de Biología y Química
José Guerrero Herman Garbes Abril Reacciones químicas: Proceso por el cual un conjunto de sustancias (reactivos) se transforman en otro conjunto.
Reactivo limitante y reactivo en exceso
BLOQUE 1. Cálculos Químicos
CÁLCULOS ESTEQUIOMÉTRICOS
Latin America Meeting Unidades de Medición
REACCIONES QUÍMCAS 1. Las reacciones químicas
TEMA 9.
UNIDADES QUIMICAS Otra forma de expresar la concentración de una solución es empleando unidades químicas, éstas se diferencian de las unidades físicas.
UNIDADES QUIMICAS Otra forma de expresar las concentraciones es por métodos químicos, estos se diferencian de los métodos FÍSICOS porque toman en cuenta.
Algunas de las propiedades del átomo
Unidades Físicas y Químicas de Concentración
Masas atómicas y molares
Medidas de Concentración de las Soluciones
RELACIONES DE MASA EN LAS REACCIONES QUIMICAS
Semana 6 Licda. Lilian Judith Guzmán Melgar
REACCIONES QUIMICAS Y ESTEQUIOMETRIA
Concepto de Masa Atómica y MOL
1 Se tiene una muestra de 34 gramos de NH3. Calcula: a) La cantidad de sustancia. b) El número de moléculas. c) El número de átomos de N y H. Datos: masas.
Pontificia Universidad Católica de Valparaíso Facultad de Ciencias
Miscelánea de ejercicios de disoluciones químicas
ESTEQUIOMETRIA.
CLASE 6 ESTEQUIOMETRÍA II.
Estequiometría: Cálculos con fórmulas y ecuaciones químicas
Conservación de la masa
Leyes Ponderales y Volumétricas
Departamento de Física y Química Cálculos Estequiométricos Un método de trabajo.
Estequiometria La parte de la química que se encarga del estudio cuantitativo de los reactivos y productos que participan en una reacción se llama estequiometria.
Generalmente, en una reacción sólo uno de los reactivos se consume por completo y que, por tanto, determina la cantidad de producto y es a éste al que.
Relaciones de masa en las reacciones químicas Capítulo 3 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
Química.
Unidad 5: Formulas quimicas
QUIMICA GENERAL Inga. Norma Brecevich
CaC2 (s) + H2O (l)  C2H2 (l) + Ca(OH)2 (ac)
PRÁCTICA #8: ESTEQUIOMETRÍA
Concepto de Masa Atómica y MOL N A = Número de Avogadro = 6,02 x10 23 Mol = Cantidad de sustancia donde hay tantas entidades elementales como átomos de.
REACCIONES QUÍMICAS Unidad 8.
Las reacciones químicas: Cálculos en reacciones químicas
ESTEQUIOMETRIA La estequiometría es la ciencia que mide las proporciones cuantitativas o relaciones de masa en la que los elementos químicos están implicados.
Química General Cálculos con ecuaciones químicas.
Molaridad. Molalidad. Eq y meq. Normalidad
Tema 4 Estequiometría ¡Nada se pierde, todo se transforma!
ESTEQUIMETRIA.
REACCIONES QUÍMICAS y ESTEQUIOMETRIA QUÍMICA 1° Ciencias
Semana 6 Licda. Lilian Judith Guzmán Melgar
Semana 6 ESTEQUIOMETRÍA (2015)
UNIDAD IV ESTEQUIOMETRÍA
Generalmente, en una reacción sólo uno de los reactivos se consume por completo y que, por tanto, determina la cantidad de producto y es a éste al que.
ESTEQUIOMETRIA DE SOLUCIONES
Análisis volumétrico Núcleo Temático 6.
ESTEQUIOMETRIA.
Unidad Mexicali Centro
ESTEQUIOMETRÍA Es el estudio cuantitativo de reactivos y productos en una reacción química.
ESTEQUIOMETRIA Semana No Semana 6 Licda. Isabel Fratti de Del Cid Diseño de diapositivas, imágenes e ilustraciones cortesía de Licda. Lilian Guzmán.
1 REACCIONES QUÍMICAS DISOLUCIONES QUÍMICA 2º bachillerato y y.
SEMANA 9 CONCENTRACIÓN DE SOLUCIONES PARTE 2 QUÍMICA 2016
Transcripción de la presentación:

ESTEQUIOMETÍA de las REACCIONES QUÍMICAS

Ecuación química Para facilitar el estudio (cualitativo y cuantitativo) de los cambios de composición de los sistemas materiales, se suele utilizar una expresión simbólica de este proceso conocida como ecuación química. Toda ecuación química consta de dos miembros y un conector y es una representación simbólica de la reacción química:…………. Reactivos → Productos………………………………….. Por ejemplo: HCl + NaOH → NaCl + H2O Índice de reactivo Es la relación cuantitativa (expresada en gramos o en moles) entre la cantidad de un dado reactivo que se pone a reaccionar y la cantidad de ese reactivo que forma parte de la ecuación química balanceada masicamente. Si en una reacción química participan dos o más reactivos, la cantidad de producto obtenido dependerá de aquel que posee menor índice de reactivo (se habla en este caso de reactivo limitante).

Ejemplo 1.- sea la reacción: 2HCl + Ca(OH)2 → CaCl2 + 2 H2O si se pone a reaccionar 50 g de HCl con 65 g de Ca(OH)2 los índices de reactivo serán: * para el HCl Ir = 50 g 71 g * para el Ca(OH)2 Ir = 65 g 74 g siendo 50 los gramos puestos a reaccionar y 71 la masa en gramos correspondiente a 2 moles de HCl siendo 65 los gramos puestos a reaccionar y 74 la masa en gramos correspondiente a 1 moles de Ca(OH)2 Ejercicio 2.- sea la reacción: 8HNO3 + 3 Cu → 3 Cu(NO3)2 + 2 NO + 4 H2O si se pone a reaccionar 2 moles de HNO3 con 60 g de Cu los índices de reactivo serán: * para el HNO3 Ir = 2moles 8 moles * para el Cu Ir = 60 g 195 g siendo 2 los moles puestos a reaccionar y 8 los moles que forman parte de la ecuación química siendo 60 los gramos puestos a reaccionar y 195 la masa en gramos correspondiente a 3 moles de Cu

Reactivo Limitante: Una reaccion quimica avanza mientras todas las sustancias reactivos, estan presentes. Por tal motivo, se suele denominar como “reactivo limitante” a aquel que al consumirse completamente determina o limita la cantidad de producto formado. Ejemplo 3. Si 350 g de bromo reaccionan con 40 g de fósforo ¿cuantos moles de bromuro de fósforo(III) se formarán ?. Según: 6 Br2 + P4 → 4 PBr3 * para el Br2 Ir = 350 g = 0,36 960 g *para el P4 Ir = 40 g = 0,32 124 g Por lo tanto el reactivo limitante es el P4 y los moles de PBr3 a obtenerse puede calcularse según: moles de PBr3 = 4  moles de PBr3 = 4.moles de P4= 4. 40 g moles de P4 1 124 g/mol  moles de PBr3 = 1,29 moles siendo 960 g la masa en gramos de 6 moles de Br2 siendo 124 g la masa en gramos de 1 mol de P4

Pérdida: hace referencia a la diferencia entre la cantidad (en gramos o en moles) de producto obtenido y lo que se debería obtener teóricamente (ley de Lavoisier). Es consecuencia de varios factores entre los que se encuentran la falta de precisión de los instrumentos de medida y las características propias de todo proceso. La perdida porcentual (P%) es la relación entre la perdida y la capacidad producida por reacción respecto de 100% de producción Ejemplo 4. En laboratorio se prepara O2 según: 2KClO3 → 2KCl + 3 O2 si se parte de 300 g de KClO3 calcular la perdida porcentual si el volumen real obtenido de O2 fue en CNPT de 60,0 litros. De acuerdo a la reacción moles de KClO3 = 2  moles de O2 = 3.moles de KClO3 moles de O2 3 2 moles de O2 =1,5 300 g =3,67 mol 122,5 g/mol Volumen de O2 en CNPT = 3,67 mol. 22,4 L/mol = 82,2 L por lo tanto la perdida será: P = 82,2 L – 60,0 L = 22,2 L y la perdida porcentual (P%) = 22,2 . 100 % = 27,0 % 82,2 con 122,5 g/mol masa de un mol de KClO3

Rendimiento: indica la capacidad de la reacción química a generar producto, en estrecha relación con la perdida producida se la define como la cantidad neta (real) de producto que se obtiene en un proceso químico. El rendimiento porcentual (R%) es la relación entre la cantidad neta (real) de sustancia producida y la cantidad producida por reacción respecto del 100% de producción. Ejemplo 5. En laboratorio se prepara O2 según: 2KClO3 → 2KCl + 3 O2 si se parte de 300 g de KClO3. Calcular el rendimiento porcentual si el volumen real obtenido de O2 en CNPT fue de 60,0 litros. De acuerdo a la reacción moles de KClO3 = 2 moles de O2 3 moles de O2 =1,5 300 g =3,67 mol 122,5 g/mol Volumen de O2 en CNPT = 3,67 mol. 22,4 L/mol = 82,2 L R% = 60,0 . 100% = 73,0 % 82,2

El porcentaje de pureza será: P % = (3,10- 0,225) .100% = 92,7 % Pureza: en muchos casos por una cuestión de costos, el o los reactivos puestos a reaccionar tanto a nivel de laboratorio como industrial vienen acompañados (en mayor o menor grado según sea su uso) por sustancias, llamadas impurezas, las que se busca sean inertes a la reacción química. En estos casos se suele definir el porcentaje de pureza para indicar la cantidad de reactivo neta (útil) y la cantidad de reactivo puesto a reaccionar respecto de 100%. . Ejemplo 6. Calcule el porcentaje de pureza de una muestra con sodio metálico, sabiendo que cuando 3,10 g de esa muestra reaccionan se producen 1,40 litros de hidrógeno medidos en CNPT según: 2Na + 2H2O → 2NaOH + H2 De acuerdo a la ecuación moles de Na = 2  moles de H2 1  moles de Na = 2. moles de H2 = 2. 1,40 22,4  moles de Na = 0,125  masa de Na = 0,125 moles. 23 g/mol  masa de Na = 2,875 g  cantidad de impurezas = 3,10 g – 2,875 g  cantidad de impurezas = 0,225 g El porcentaje de pureza será: P % = (3,10- 0,225) .100% = 92,7 % 3,10