MOTORES DE CORRIENTE ALTERNA

Slides:



Advertisements
Presentaciones similares
Accionadores para Motores (Drives)
Advertisements

Máquinas asíncronas Jesús Fraile Ardanuy Área de Ingeniería Eléctrica
CONTINUA Y ALTERNA Montoya.-
MOTORES DE CORRIENTE ALTERNA
Accionadores para Motores (Drives)
Campo magnéticCampo magnético Inducción electromagnética Magnitudes y unidades SI.
FUNCIONAMIENTO DEL SISTEMA DE CARGA EN UN VEHICULO.
 Transforman energía eléctrica en mecánica.  Son los motores utilizados en la industria por que: Tienen bajo costo, facilidad de transporte, de limpieza.
MOTORES SÍNCRONOS JHON HENRY AVENDAÑO G..
Motores de Inducción Polifásicos
Fundamentos de las Máquinas de C.A Prof. Camilo Basay M. MES4201
MOTORES AC SINCRÓNICOS TEORÍA Y FUNCIONAMIENTO Mantiene una velocidad de rotación operacional constante, irrespectivo al tipo de carga que actúa sobre.
RAMIREZ LARA IVAN JAIR PRADO JIMÉNEZ IVAN ADAIR Motor de corriente alterna.
MÁQUINAS DE C.C..
Ley de Faraday-Henry A principios de la década de 1830, Faraday en Inglaterra y J. Henry en U.S.A., descubrieron de forma independiente, que un campo magnético.
ING.CIP CESAR LOPEZ AGUILAR. CONCEPTOS GENERALES DE MAQUINAS ELÉCTRICAS I NTRODUCCIÓN En los cursos previos como es el de CIRCUITOS ELECTRICOS, hemos.
EL Conversión de la Energía y Sistemas Eléctricos Máquinas Sincrónicas.
Ley de Ohm Mientras mayor es la resistencia menor es la corriente y viceversa. Este fenómeno da como resultado la ley de Ohm.
MÁQUINAS ELÉCTRICAS Dr. Emmanuel H. Mayoral. TEST 1. ¿Qué materiales pueden ser atraídos por un imán? a. Hierro (acero o fundición de hierro) b. Materiales.
La conversión electromecánica La conversión electromecánica GENERADORELEMENTAL.
Introducción a los Variadores de Frecuencia
Movimiento Armónico Simple y Péndulo Simple
Generadores Síncronos (7)
Motores de CD (9) Dr. Pedro Bañuelos Sánchez.
Apuntes Electrotecnia IP-Parte 2, AC
REPASO LEYES FUNDAMENTALES
MÁQUINAS ELÉCTRICAS ASÍNCRONAS
DISPOSITIVO DE VELOCIDAD SINCRÒNA.
Movimiento Armónico Simple y Péndulo Simple
Aspectos constructivos: generalidades
Ejemplos de aplicación de métodos numéricos
Tema V: Fundamentos de la conversión electromecánica de energía
14. Dispositivo de falta de velocidad 15
Curvas de respuesta mecánica par - velocidad
INDUCCIÓN ELECTROMAGNÉTICA
Máquinas Eléctricas I: Motor Sincrónico, Campo Magnético Giratorio.
Máquinas Eléctricas I: Máquina Sincrónica, Conceptos Básicos.
La ley de Ohm.
Clasificación de Motores
CAPÍTULO 4: TURBINAS KAPLAN
Código Asignatura: MPEA01 ELECTRICIDAD AUTOMOTRIZ
MOTORES AC Prof. Egberto Hernández
Conalep plantel Ing. Adrián Sada Treviño
Instituto Superior tecnológico Luis Rogerio González Control Industrial Realizado por : Cristian Romero _ Christian Zolorzano_ Santiago Méndez_ Carlos.
MÁQUINAS SINCRONAS. Máquinas sincronas Los maquinas síncronas son un tipo de motor de corriente alterna. Su velocidad de giro es constante y depende de.
Motores de Inducción Univ.: Álvaro L. Bueno Cayoja Docente: Lic. Ángel A. Gutiérrez Rojas Materia: Maquinas Eléctricas ETM 240 Paralelo: 4v1 Fecha: 13.
Control de Motores de Corriente Alterna.
ESTABILIDAD DE LOS SISTEMAS ELECTRICOS DE POTENCIA
Inducción electromagnética
CIRCUITO MAGNETICO Maestro: Ing. Ernesto Yáñez Rivera
MEDICIONES ELECTRICAS I Año 2018
Electricidad, electromagnetismo y medidas
Máquinas Eléctricas Prof. Andrés J. Diaz C. PhD
Sistema de protección de motores
MEDICIONES ELECTRICAS I Año 2018
Conceptos Generales Cuarta Unidad
Inducción electromagnética
ESCUELA SUPERIOR POLITÉCNICA DE CHIMBORAZO Máquinas Eléctricas INTEGRANTES: WASHINGTON NARANJO DANIEL OROZCO MICHAEL PERUGACHI BYRON PADILLA.
MEDICIONES ELECTRICAS I Año 2018
TECNOLÓGICO NACIONAL DE MÉXICO. INSTITUTO TECNOLÓGICO DE VERACRUZ.
DESCRIPCIÓN DEL CONTACTOR
La adquieren los cuerpos
CORRIENTE ALTERNA TRIFASICA
MANTENIMIENTO EN MOTORES ELÉCTRICOS MONOFÁSICOS. HERRAMIENTAS Y EQUIPOS PARA EL MANTENIMIENTO DE MOTORES ELÉCTRICOS Equipos de prueba de aislamiento Para.
Máquinas Eléctricas Rotativas (ML-244) Principio de Funcionamiento de las Máquinas Asíncronas o de Inducción Trifásicas Gregorio Aguilar Robles 7 de setiembre.
TIPO DE MOTORES.. Definición: El motor eléctrico es un dispositivo que convierte la energía eléctrica en energía mecánica por medio de la acción de los.
Maquinas Asíncronas Estudiantes: Carlo Rivas Carlo Rivas Nolimar Gonzalez Nolimar Gonzalez Leonardo Escalona Leonardo Escalona.
Introd. A la Electrónica de PotenciaCurso 2011/12Universitat de València 99 + % de toda la potencia está generada por máquinas síncronas Las Máquinas Síncronas.
MOTORES DE CORRIENTE ALTERNA UNIVERSIDAD NACIONAL DE INGENIERÍA FACULTAD DE INGENIERÍA QUÍMICA Y TEXTIL CIRCUITOS ELÉCTRICOS y AUTOMATIZACIÓN Ing. JORGE.
MOTORES DE CORRIENTE ALTERNA UNIVERSIDAD NACIONAL DE INGENIERÍA FACULTAD DE INGENIERÍA QUÍMICA Y TEXTIL CIRCUITOS ELÉCTRICOS y AUTOMATIZACIÓN Ing. JORGE.
Transcripción de la presentación:

MOTORES DE CORRIENTE ALTERNA UNIVERSIDAD NACIONAL DE INGENIERÍA FACULTAD DE INGENIERÍA QUÍMICA Y TEXTIL CIRCUITOS ELÉCTRICOS y AUTOMATIZACIÓN MOTORES DE CORRIENTE ALTERNA Ing. JORGE COSCO GRIMANEY

Motor de corriente alterna

CLASIFICACIÓN DE LAS MÁQUINAS ELÉCTRICAS A.-Máquinas Eléctricas Estáticas Transformadores Convertidores e Inversores B.-Máquinas Eléctricas Rotativas Generadores Eléctricos Motores Eléctricos De Corriente Continua De Corriente Alterna

CARACTERÍSTICAS DE LAS MÁQUINAS ELÉCTRICAS 1.Potencia 2.Tensión 3.Corriente 4.Factor de Potencia 5.Frecuencia 6.Rendimiento 7.El Campo Magnético

1.POTENCIA POTENCIA NOMINAL Es la potencia útil disponible que entrega o produce en régimen nominal (condiciones específicas de diseño: T°<75°C, duración de funcionamiento) una máquina eléctrica. A condiciones diferentes se llama POTENCIA ÚTIL o POTENCIA DE TRABAJO. POTENCIA NOMINAL = POTENCIA A PLENA CARGA POTENCIA NULA = TRABAJA EN VACIO

POTECIA NOMINAL DE UN GENERADOR Potencia Aparente en los bornes del Secundario POTECIA NOMINAL DE UN MOTOR Potencia Mecánica disponible en el eje de Salida POTECIA NOMINAL DE UN TRANSFORMADOR Potencia Aparente en los bornes del Secundario LA POTENCIA QUE FIGURA EN LAS PLACAS CARACTERISTICAS SON LAS POTENCIAS NOMINALES

2.-TENSIÓN Es la diferencia de potencial entre los bornes de salida eléctrica en generadores y transformadores, y bornes de entrada en los motores. En servicio normal la tensiones función de la carga, en algunos casos dependen de los órganos reguladores adicionales. TENSIÓN NOMINAL (VN) Es aquella para la cual la máquina ha sido diseñada (o dimensionada).Es la que figura en la placa y para la cual valen las garantías del fabricante. TENSIÓN DE SERVICIO (V servicio) Es el valor de la tensión en los bornes de la máquina cuando está en servicio, es decir, es la tensión que va ha ceder si es generador o recibir y ceder si es transformador o recibir si es motor, en el lugar donde se instalan. Tensión de servicio máximo admisible 1,15 VN

3.-CORRIENTE NOMINAL Sistema Monofásico I = PN / (VN . cosθ) Sistema Trifásico I = PN / (√3 x VN . cosθ) Si la máquina se sobrecarga la corriente sobrepasa de un 10% a 15% su valor nominal. La Corriente de Arranque llega a valores de 3 IN a 5 IN.

4.-FACTORDEPOTENCIA (Cos Φ) Es la relación entre la potencia activa y la potencia aparente, siempre que las tensiones y las corrientes sean sinusoidales. Cos Φ = P / S

5.-FRECUENCIA Es el numero de oscilaciones periódicas completas de la onda fundamental durante un segundo. En los generadores de corriente alterna la frecuencia esta dada por: f = P. n / 60 P=Par de polos de la máquina n=revoluciones por minuto (RPM)

6.-RENDIMIENTO(η) Es la relación entre la potencia suministrada y la potencia absorbida por la máquina.

Motor Asíncrono o de Inducción: De acuerdo a la forma de construcción del rotor, los motores asincrónicos se clasifican en: ► Motor Asincrónico tipo Jaula de Ardilla ► Motor Asincrónico de Rotor Bobinado

Motor de Inducción

MOTOR ASÍNCRONO Los bobinados que producen el campo magnético se llaman tradicionalmente los "bobinados de campo" mientras que el rotor que gira se llaman la "armadura". En un motor de C.A. trifásico el campo magnético gira con una velocidad que depende del numero de polos y de la frecuencia. El más común de los motores de corriente alterna es el Motor de Inducción, donde la corriente eléctrica es inducida en el rotor. La velocidad de giro del rotor es menor que la velocidad del campo magnético giratorio

INDUCCIÓN.FUNDAMENTO Se basa en la concepción de campos giratorios ( Arago 1822,Ferraris 1885,Tesla 1886). Si sobre un mismo eje se colocan un disco de metal y un imán en forma de herradura; al girar éste, el campo magnético corta el disco e induce corrientes en él. Al estar estas corrientes en el seno de un campo magnético también se mueven, de tal forma que se desarrolla una fuerza entre corrientes y el campo. Es tal que hace que el disco siga al imán en su rotación. El disco gira en el mismo sentido que el campo del imán, pero a menor velocidad, de tal forma que nunca puede alcanzar la velocidad del iman. Si llega a alcanzarla se para

Motor de Inducción

Partes del motor Asíncrono o de Inducción: 3 devanados en el estator desfasados 2p/(3P) siendo P nº pares de polos El Nº de fases del rotor no tiene porqué ser el mismo que el del estator, sí será igual el número de polos. Los devanados del rotor están conectados a anillos colectores montados sobre el mismo eje Los conductores del rotor están igualmente distribuidos por la periferia del rotor. Los extremos de estos conductores están cortocircuitados, no habiendo conexión con el exterior. La posición inclinada de las ranuras mejora el arranque y disminuye el ruido

Motor Asíncrono o de Inducción: Rotor de jaula de ardilla Las bobinas del estator induce corriente alterna en el circuito eléctrico del rotor (de manera algo similar a un transformador) y el rotor es obligado a girar. los motores asíncronos se clasifican de acuerdo a la forma de construcción del rotor. Rotor de jaula de ardilla Este es el rotor que hace que el generador asíncrono sea diferente del generador síncrono. El rotor consta de un cierto número de barras de cobre o de aluminio, conectadas eléctricamente por anillos de aluminio finales Rotor bobinado El motor de jaula de ardilla tiene el inconveniente de que la resistencia del conjunto es invariable, no son adecuados cuando se debe regular la velocidad durante la marcha

Motor de Inducción

Motor de Inducción

Motor de Inducción

Motor de Inducción

Motor de Inducción

CAMPO MAGNETICO GIRATORIO

Estos motores tienen la peculiaridad de que no precisan de un campo magnético en el rotor alimentado con corriente continua como en los casos del motor de corriente directa o del motor síncrono. Solo necesita una fuente de corriente alterna (trifásica o monofásica) para alimentar al estator.

Estos motores tienen la peculiaridad de que no precisan de un campo magnético en el rotor alimentado con corriente continua como en los casos del motor de corriente directa o del motor síncrono. Solo necesita una fuente de corriente alterna (trifásica o monofásica) para alimentar al estator.

El estator está constituido por un núcleo en cuyo interior existen P pares de arrollamientos colocados simétricamente en un ángulo de 120º. Son sometidos a una C.A. y los polos del estator se trasladan continuamente creando un campo giratorio.

Cuando las corrientes trifásicas son aplicadas a los bobinados del estator, el campo magnético gira a una velocidad constante

CAMPO MAGNETICO GIRATORIO. Si consideramos : A y A´, B y B´, C y C´ devanados concentrados por fase. A A´ × ● B B´ C C´ Fig 3. 180° × A ● A´ B C C´ B´ Fig 2. 90° × ● A A´ B B´ C C´ Fig1. 0° N S N S N S

CAMPO MAGNETICO GIRATORIO. 3 3

TORQUE INDUCIDO EN EL ROTOR

PRINCIPIO DE FUNCIONAMIENTO DEL MOTOR ASÍNCRONO Campo magnético giratorio en el estator Ns=f x2 Π P El campo magnético induce f.e.m en el rotor Circulan corrientes por el rotor Fuerzas electromagnéticas entre las corrientes del rotor y el campo magnético del estator Par en el rotor: el rotor gira El rotor gira a una velocidad Nr inferior a la velocidad de sincronismo Ns pues en caso contrario no se induciría f.e.m. en el rotor y por lo tanto no habría par motor

Corriente inducida en el rotor El flujo magnético distribuido sinusoidalmente, generada por las corrientes del estator, realizan un barrido en las barras conductores del rotor y generan una tensión inducida en ellos. El resultado es un conjunto de corrientes distribuidas sinusoidalmente en las barras cortocircuitadas del rotor. Si miramos las barras del rotor desde arriba tenemos un campo magnético moviéndose respecto al rotor. Esto induce una corriente muy elevada en las barras del rotor, que apenas ofrecen resistencia, pues están cortocircuitadas por los anillos finales. El rotor desarrolla entonces sus propios polos magnéticos, que se ven, por turnos, arrastrados por el campo magnético giratorio del estator. Eje de giro B I F Corrientes y fuerzas inducidas en la jaula

El campo magnético giratorio origina un flujo que induce corrientes en el rotor que interactúan con el campo magnético del estator. En cada conductor se produce una fuerza F=ilB que da lugar al par del motor.

¿Cual es la velocidad del motor? Deslizamiento: diferencia entre la velocidad de sincronismo y la velocidad de giro Velocidad mecánica n es rev/minuto y  es in radianes/segundo

¿Cual es la velocidad del motor? La velocidad del motor para máxima carga es

El rotor intenta seguir en su movimiento al campo magnético B girando a velocidad w. La velocidad de giro w solo es igual aproximadamente ws cuando el motor está en vacío, es decir, sin carga en el eje (no realiza par). A medida que cargamos el motor, o sea, a medida que le exigimos más par en el eje, el motor disminuirá su velocidad girando entonces a una velocidad angular w < ws. Por otra parte la velocidad angular ws depende de la frecuencia de la red que alimenta al motor y de la forma en que está bobinado el estator. Según como se realiza el mismo tendremos motores de 1par de polos, de 2, de 3, etc. Tenemos que:

CIRCUITO EQUIVALENTE del MOTOR JAULA DE ARDILLA

Circuito Equivalente por Fase

Circuito Equivalente por Fase

Circuito Equivalente por Fase

FLUJO DE POTENCIA

CURVA PAR - VELOCIDAD

Determinación de parametros de un motor de inducción

Determinación de parametros de un motor de inducción

Determinación de parametros de un motor de inducción

INSTALACION DE LOS MOTORES JAULA DE ARDILLA

Arranque estrella-triángulo Circuito de mando

No se olviden que el lunes 17 hay exposición de todos los grupos sobre instalación de motores