GESA: Productos y servicios derivados de la Red Nacional de Estaciones GPS Permanentes Agrim. Mariano Müller Facultad de Ciencias Astronómicas y Geofísicas Universidad Nacional de La Plata
Índice Grupo GESA (Georreferenciación Satelitaria) Estaciones Permanentes, nuestra experiencia Aportes al marco de referencia argentino Posicionamiento a muy bajo costo Mapas ionosféricos para el posicionamiento puntual y diferencial
¿Quiénes somos? M. Müller Candidato a la Maestría en Geomática L. Fernández Dr en Astronomía Investigador A. Meza Dra. en Astronomía Profesor Adjunto M. Gende Dr en Geofísica Investigador C. Brunini Dr. en Astronomía Prof. Titular Director de GESA M. P. Natali Candidata al doctorado en Astronomía V. Mackern Dr Ingeniero Agrimensor Investigador Post-doctoral L. A. Araoz Candidato a la Maestría en Informática J. Moirano Dr. en Geofísica Investigador J. C. Uzandivaras Ing. Geodesta Geofísico Profesor Titular G. Noguera Candidato a la Maestría en Geomática F. Azpilicueta Candidato del doctorado de Astronomía E. Gularte Candidata al doctorado en Astronomía
Georeferenciación Satelital Profesión 1 Ing. Geodesta 2 Agrimensores (haciendo un Master en geomática) 1 Dr. en Agrimensura 3 Dr. en Astronomía 2 Dr. en Geofísica 3 Lic. Astronomía (a meses de ser Dr.) 1 Ing. en Sistemas (haciendo un Master en Informática) Ocupación 2 Prof. Titulares con DE 1 Prof. Adjunto con DE 2 Jefes de TP con DE 2 Ayudantes con DS 5 Becarios (UNLP, CONICET, AGENCIA) 4 Miembros de la Carrera del Investigador del CONICET
Algunos vínculos actuales y activos Instituto Geodésico Alemán (Munich, Alemania) Centro Internacional de Física Teórica (Trieste, Italia) Universidad Complutense (Madrid, España) Universidad de Colorado (EE.UU.) Observatorio de Arecibo (Puerto Rico) Instituto de Electromagnetismo (Florencia, Italia) Universidad de Concepción (Chile) Instituto Geográfico Militar CRICYT (Mendoza) Catastro de Chubut Universidad del Sur (Bahía Blanca) Universidad Nacional de Rosario Servicio Hidrográfico Naval (Bs. As. y Puerto Deseado) Universidad Tecnológica (Tucumán) CASLEO (San Juan) UBA
Estaciones Permanentes Pasado, presente y futuro EP instaladas Presente Soluciones para automatizar la toma de datos Futuro Mejorar las estaciones Obtención de datos a “cuasi tiempo real” Achicar el intervalo de muestreo
MPLA Instalada el: 12/06/02 Atendida por: Gustavo Cano (INIDEP) Receptor: LEICA MC1000 Antena: LEICA AT504 Chocke Ring/Radome
MPLA Eficiencia durante 2005: 176/254 ~ 70% Retardo en la disponibilidad: 26 días Mejoras para el futuro: -Bajada automática de datos -Subida automática de datos al servidor
VBCA Instalala el: 12-14/12/98 Atendida por: Claudia Bel (UNS) Receptor: LEICA SR9500 Antena: LEICA AT303 Chocke Ring
VBCA Eficiencia durante 2005: 340/365 ~ 93% Retardo en la disponibilidad: 4 días Mejoras para el futuro: -conexión a internet
RWSN Instalala el: 12/11/99 Atendida por: Marcos Orellano (DGCeIT) Receptor: ASHTECH UZ-12 Antena: ASHTECH Chocke Ring
RWSN Eficiencia durante 2005: 270/365 ~ 74% Retardo en la disponibilidad: 16 días Mejoras para el futuro: -subida automática de datos al servidor
PDES Instalala el: 04/05/05 Atendida por: Ctan. Daniel Storti (SHN) Receptor: LEICA500 Antena: LEICA AT504 Chocke Ring/Radome
PDES Eficiencia durante 2005: 226/241 ~ 94% Retardo en la disponibilidad: 17 días Mejoras para el futuro: -bajada automática de datos -conexión a internet -subida automática de datos al servidor
CORR (DC-SIT) Instalala el: 30/05/05 Atendida por: Agrim. Juan Antonio Bazante y Lic. Cesar Gerardo Kobluk (DC-SIT) Receptor: LEICA SR299 Antena: LEICA Internal
CORR (DC-SIT) Eficiencia durante 2005: 107/215 ~ 50% Retardo en la disponibilidad: 2 días
Trabajo en desarrollo Soluciones para automatizar: La bajada de datos El envío y recepción de los mismos El control de calidad de las observaciones La disposición de las observaciones en el formato adecuado
Materialización del Marco de Referencia a través de la Red Nacional de Estaciones María Paula Natali, Mariano Müller Facultad de Ciencias Astronómicas y Geofísicas Universidad Nacional de La Plata
Red Nacional de Estaciones GPS Permanentes 7 Estaciones Globales IGS: AUTF, CFAG, CORD, LPGS, RIOG, TUCU, UNSA 7 Estaciones Regionales IGS (RNAAC DGFI SIR): IGM1, MPLA, MZAC, PDES, RWSN, UNRO, VBCA Estaciones futuras: LFLA (La Florida, San Luis), MECO (Mercedes, Corrientes)
Actividades Control de la disponibilidad de datos (retardo en la carga al servidor) Estado de los datos Contacto con los responsables de cada estación Procesamiento de los datos para generar productos
Cómo obtener el dato de una EP? Direcciones de Interés Servidor IGM (Oficial): http://ramsac.igm.gov.ar Servidor IGS (Internacional): ftp://cddisa.gsfc.nasa.gov/pub/gps/gpsdata Servidor de la Universidad Nacional de Rosario (UNRO) http://fiselect2.fceia.unr.edu.ar/gps/ Servidor Corrientes (CORR): ftp://www.catastrocorrientes.gov.ar/pub/gps Servidor de la Universidad Nacional de Córdoba (UCOR) http://www.agrimensura.efn.uncor.edu/ubicacion.htm Servidor de la Universidad Nacional del Sur (VBCA) http://www.epbb.uns.edu.ar/
Servidor IGM
Retardo en la carga al servidor (2005) período Junio - Diciembre
Estado de los datos Información del Header (metadato) Nombre de la Estación Fecha de medición Tipo de antena Altura de la antena Datos propiamente dichos (cuerpo del RINEX) Falta de mediciones en algunas de las fases Pocas épocas
Estado de los datos
Pasos del Procesamiento Bajada de datos del servidor IGM (o alternativo) Tratamiento previo de los datos (descompresión, deshatanaka, edición, etc.) Pre-Procesamiento (saltos de ciclo, outliers, etc.) Procesamiento: cálculo de vectores, soluciones libres (diarias y semanales) Evaluación de la calidad interna de las soluciones (repetitividad) Ajuste de la red al marco de referencia
Características del Procesamiento El procesamiento se llevó a cabo utilizando el Bernese GPS Software V5.0 (Programa Científico): Intervalo de muestreo de 30 segundos para las soluciones diarias. Se utilizan los productos finales del IGS: efemérides precisas, parámetros de rotación de la Tierra y variaciones a los centros de fase de las antenas. El efecto troposférico es modelado y se estiman correcciones a los parámetros troposféricos cada 2 horas. Las ambigüedades se estiman en forma entera, usando la estrategia QIF. La máscara de elevación es de 10º. El marco de referencia utilizado es SSC(DGFI)04P01 (ITRF) que es introducido a través de las estaciones LPGS, RIOG y SANT
Procesamiento Cálculo de vectores (diarios) Cálculo de la red libre diaria Combinación de las soluciones diarias de la red (red libre semanal)
Productos del Procesamiento Soluciones libres semanales Soluciones ajustadas a un marco de referencia Coordenadas y Velocidades
Repetitividad diaria Estación IGM (IGM1) Norte Este Altura
Repetitividad diaria Estación Salta (UNSA) Norte Este Altura
Repetitividad diaria Estación Mar del Plata (MPLA) Norte Este Altura
Variación temporal de coordenadas Estación Rawson (RWSN)
Variación temporal de coordenadas Estación IGM1 (IGM)
Noticias de la Red de EP´s Publicaciones Periódicas CPLat
Conclusiones El centro de Procesamiento de La Plata (CPlat) está realizando sus tareas en forma continua desde Septiembre de 2004, utilizando el software Bernese V5.0 produciendo los siguientes resultados: Informe periódico del estado de la Red de Estaciones GPS Permanentes Obtención de soluciones “libres” semanales Análisis de las soluciones semanales (Repetitividad) Combinación de las soluciones semanales y ajuste de las coordenadas al marco de referencia ITRF y SSC(DGFI)04P01, mediante las estaciones fiduciales (coordenadas muy precisas) Obtención de series de coordenadas para las EP´s de la Red Nacional Contribución a la materialización de SIRGAS e ITRF, a través del envío de las soluciones libres semanales al centro de procesamiento regional DGFI
Conclusión final El procesamiento contínuo con el software científico Bernese, la combinación de soluciones libres y el análisis riguroso de las combinaciones provee al usuario de las mejores coordenadas disponibles hasta el momento!!!
Posibilidades de posicionamiento a bajo costo Soluciones para mejorar la exactitud de navegadores satelitales
DGPS Inverso Posicionamiento “diferencial” donde se aplican correcciones sobre las coordenadas (NO sobre las seudo-distancias) NO requiere guardar la observación: receptores MUY económicos Requiere las coordenadas y muy poca información extra (SVN/PRN del satélite observado y época) Además requiere lápiz y papel o un dispositivo donde guardar la época y los satélites (Laptop, Palm, teléfono celular moderno)
Prueba piloto 3 estaciones y 4 días de datos: 192 horas
Diferencial “tradicional”… con receptores NO tradicionales Guardar las observaciones de FASE y postprocesar Vector de 3 Km., sesión de 15 minutos, repetida 25 veces : 0.60 cm. de error medio cuadrático Los navegadores NO pueden reemplazar a los receptores geodésicos de una frecuencia para aplicaciones centimétricas SÍ pueden dar coordenadas con un error menor a un metro.
¡Rinex de un navegador! 2.10 OBSERVATION DATA G (GPS) RINEX VERSION / TYPE 2002Mar14 Mauricio Gende 20051019 13:34:56 PGM / RUN BY / DATE ROOF MARKER NAME M ARKER NUMBER YO OBSERVER / AGENCY Navegador económico REC # / TYPE / VERS La propia del navegador ANT # / TYPE 2780100.9133 -4437441.0161 -3629414.1832 APPROX POSITION XYZ 0.0000 0.0000 0.0000 ANTENNA: DELTA H/E/N 1 0 WAVELENGTH FACT L1/2 2 C1 L1 # / TYPES OF OBSERV 30.0000 INTERVAL END OF HEADER 05 9 28 13 34 30.0000000 0 7G 6G15G16G18G21G22G30 21490817.316 -1237938.301 9 20433737.686 -3625808.723 9 21502819.810 -4924109.426 9 20762891.064 -5148226.349 9 20698502.903 -1578892.631 8 22783297.870 -6773718.108 8 24195833.493 -3015500.320 6 05 9 28 13 35 0.0000000 0 7G 6G15G16G18G21G22G30 21502335.798 -1177421.427 9 20432047.355 -3634679.064 9 21494287.154 -4968966.127 9 20753406.182 -5198068.235 9 20707969.219 -1529141.537 8 22763481.291 -6877860.577 8 24217103.084 -2903732.754 6
Modelos Ionosféricos utilizando los GNSS Los satélites GNSS (GPS, GLONASS, Galileo) operan en dos frecuencias diferentes. La ionósfera es la principal fuente de error que afecta a estas señales por ser un medio dispersivo El retardo ionosférico es proporcional al sTEC (Contenido Total Electrónico en la dirección al satétlite) e inversamente proporcional al cuadrado de la frecuencia de la señal 1 m2 TEC
Modelo LPIM (GESA) Calibración Ionosfera La frecuencia dual de los GNSS nos provee una determinación no-calibrada del TEC. Por medio del observable libre de geometría se determina el retardo ionosférico en la dirección de la señal (sTEC) Calibración Ionosfera
Modelos Ionosféricos para los GNSS El retardo Ionosférico constituye la principal fuente de error para receptores GNSS que operan en simple frecuencia. Describiremos: Correcciones en el posicionamiento puntual con modelos regionales: Mapa Ionosférico Regional para América del Sur Correcciones en el posicionamiento diferencial con modelos locales: Implementación de un modelo generado a partir de las estaciones existentes: Europeas, Norte América y Región del Caribe
MAPAS DE VTEC PARA AMÉRICA DEL SUR Esquema de Procesamiento: 50 Estaciones pertenecientes a América del Sur RINEX + Efemérides satelitales Procesamiento LPIM Mapas TEC
SIRGAS network, Courtesy of W. Seemüller, DGFI Desde el 1 de julio de 2005, GESA ha iniciado un servicio experimental para proveer mapas de América del Sur Los productos están disponibles en http://cplat.fcaglp.unlp.edu.ar/ Mapas horarios en formato jpg Película diaria, formato avi Grillado horario de 1ºx1º 10 días de demora Prueba piloto en el marco del proyecto SIRGAS SIRGAS network, Courtesy of W. Seemüller, DGFI
Mapa Ionosférico
POSICIONAMIENTO PUNTUAL Esquema SBAS (WASS, EGNOS) Una de las estaciones perteneciente a la red se toma como estación prueba para realizar sobre ella las correcciones: CUIB (-56º,-15º) Utilizamos las grillas horarias para las correcciones ionosférica. Estimación del sTEC de la estación prueba: Corrección ionosférica a partir de los valores de VTEC obtenidos de las grillas (LPIM) Transformación del VTEC a sTEC en la estación prueba
Esquema de trabajo Retardo Ionosférico verdadero = estimado con la doble frecuencia de la estación de prueba Retardo Ionosférico calculado = estimado con el modelo LPIM (haciendo uso de la función de mapeo) Se analizan como afectan los retardos ionosfericos al posicionamiento puntual
Resultados Día calmo Día perturbado
Diferencia media entre el efecto ‘ionosferico verdadero’ y el modelo LPIM Latitud Longitud Altura Día calmo 0.3 m 0.35 m 1.5 m Día perturbado 0.42 m 0.40 m 2.65 m
POSICIONAMIENTO DIFERENCIAL Esquema de Procesamiento: RINEX + Efemérides satelitales Procesamiento LPIM DCB, obtención del sTEC
Estimación del sTEC de la estación prueba: Corrección ionosférica a partir de los valores de VTEC obtenidos de los sTEC de las estaciones cercanas. Transformación del VTEC a sTEC en la estación prueba
Para comparar los resultados: Esquema de trabajo El valor de sTEC estimado a través del modelo es incorporado al archivo RINEX (a la portadora L1) de la estación de prueba. Con la estación más cercana se calcula la posición (diferencial) de la estación de prueba: estimación L1 corregida Para comparar los resultados: Se calcula la posición diferencial de la estación prueba haciendo uso del observable libre de Ionosfera L3 (mejor resultado) Se calcula la posición diferencial de la estación prueba haciendo uso del observable L1
Resultados
Conclusiones Implementar nuestros modelos Ionosfericos (LPIM) en la determinación de las coordenadas tiene una confiabilidad mejor a los 40 cm en coordenadas horizontales y 2.5 metros en coordenadas verticales. Implementar nuestra metodología en posicionamiento diferencial con L1 presenta una gran ventaja para bases medias (mayores a los 60 km y menores a los 600 km)
Gracias por su atención Mariano: mmuller@fcaglp.unlp.edu.ar