VENTILACIÓN MECÁNICA Dr Iván Gómez Cuevas Dr Marco Alcántara

Slides:



Advertisements
Presentaciones similares
FISIOLOGIA RESPIRATORIA
Advertisements

FISIOLOGIA RESPIRATORIA
EFECTOS FISIOPATOLÓGICOS DE LA VENTILACIÓN MECÁNICA
Modos de Ventilación Mecánica
VENTILACIÓN MECÁNICA DISERTANTE: DR GARRIDO TUTOR : DR MIRANDA.
Asistencia Respiratoria Mecanica
VMNI ¡El paciente está en ventilación espontánea!
CONCEPTOS BASICOS ASISTENCIA VENTILATORIA
Los músculos respiratorios modifican el volumen de la caja torácica
INTERPRETAR CURVAS DEL RESPIRADOR. ASINCRONIA PACIENTE-VENTILADOR
MODULO DE NEUMONOLOGIA
Unidad I:FISIOLOGIA RESPIRATORIA
ANATOMIA Y FISIOLOGIA RESPIRATORIA
UNSL Fac. de Ciencias de la Salud Licenciatura en Enfermería
Interacción Corazón-Pulmón
NUEVAS MODALIDADES EN VENTILACION MECANICA Y EL ROL DE ENFERMERIA
VENTILACIÓN PULMONAR.
SISTEMA RESPIRATORIO ANATOMIA FUNCIONAL. Vía aérea superior.
MECANICA DE LA RESPIRACION Músculos respiratorios
ESTRUCTURA Y FUNCIÓN DEL SISTEMA RESPIRATORIO
Ejercicios respiratorios (espirómetro de incentivo-triflo)
Taller: Aparato Respiratorio y la Parálisis Cerebral
EL SISTEMA RESPIRATORIO
EL APARATO RESPIRATORIO
VENTILACIÓN MECÁNICA. Dr Iván Gómez Cuevas Dr Marco Alcántara
Bioingeniería 1 L.I.A.D.E. Ing. Walter Gómez
FISIOLOGIA DEL SISTEMA RESPIRATORIO
Mecánica de fluidos Respiración externa y circulación sanguínea
INTRODUCCION La respiración es el proceso por el cual ingresamos aire (que contiene oxígeno) a nuestro organismo y sacamos de él aire rico en dióxido de.
COMPLEMENTO UNIDAD TEMÁTICA Nº 10
FISIOLOGIA DE LA RESPIRACIÓN (Bases cuantitativas y Mecánica Pulmonar)
ALTERACIONES DE LA VENTILACION ALVEOLAR
MASCARILLA DE LA CPAP BOUSSIGNAC-VIGON
Ventilación Mecánica En Pediatría
ANATOMIÍA Y FUNCIONAMIENTO DEL APARATO RESPIRATORIO
VENTILACIÓN MECÁNICA.
Cuidados de Enfermería en Neonatología
MECANICA DE LA RESPIRACION
Anatomía y fisiología del Aparato Respiratorio
La función del aparato respiratorio es la de hacer que entre oxígeno a nuestro cuerpo y que este oxígeno entre hasta la sangre. También permite la salida.
Modalidades utilizadas en VMNI
II CURS - TALLER DE VENTILACIÓ MECANICA NO INVASIVA (VMNI) PER MEDICINA D’URGÈNCIES I EMERGÈNCIES SABADELL, 3 DE JUNY DE 2010 Modalidades de VMNI Ana Sogo.
VENTILACIÓN MECÁNICA NO INVASIVA
Procesos fisiológicos en el ser humano
Cátedra de Anatomía y Fisiología Humana
Función Sistema Respiratorio
H.C.I.P.S. CURSO POST GRADO EMERGENTOLOGIA
FUNCION RESPIRATORIA TERCERA PARTE.
DRA. SANDRA LETICIA TREJO CRUZ
Ventilación Mecanica.
VENTILACION MECANICA Sensibilidad
Fisiología del Aparato Respiratorio
Aparato respiratorio El aparato respiratorio o tracto respiratorio conforma un sistema encargado de realizar el intercambio gaseoso en los animales. Su.
Capítulo 4 Clase 1 Músculos respiratorios Músculos inspiratorios
PRESCRIPCION DEL EJERCICIO EN USUARIOS CON ENFERMEDAD RESPIRATORIA CRONICA Ana Isabel Caro.
Capítulo 4 Clase 1 Músculos respiratorios Músculos inspiratorios
INSPIROMETRIA INCENTIVA CONCEPTOS BASICOS
Sistema Cardiorrespiratorio
Dr. S. Casado Hospital Virgen de la Salud. Toledo 2010
EL APARATO RESPIRATORIO
La respiración Javier Acebes Acebes.
VENTILACIÓN Y CIRCULACIÓN PULMONAR
Intercambio de gases SISTEMA PULMONAR.
SIstema respiratorio.
Ventilación mecánica en la anestesia del paciente obeso
FISIOLOGIA DEL APARATO RESPIRATORIO
Presión Positiva Espiratoria Final
Mecánica Respiratoria
Transcripción de la presentación:

VENTILACIÓN MECÁNICA Dr Iván Gómez Cuevas Dr Marco Alcántara Dr Gustavo López Aburto

“...Se debe practicar un orificio en el tronco de la tráquea, en el cual se coloca como tubo una caña: se soplará en su interior, de modo que el pulmón pueda insuflarse de nuevo...El pulmón se insuflará hasta ocupar toda la cavidad torácica y el corazón se fortalecerá...” Andreas Vesalius (1555

HISTORIA 1555:Andrea Vesalius 1776: John Hunter; Sistema de doble via. 1864: Alfred Jones: Primer sistema de presión Negativa. 1876: Woillez: Espiroesfera( Pulmon Mecánico).

1928: Drinker y Shaw Sistema de presión negativa de uso prolongado 1931: JH Emerson Sistema con velocidades variables 1950: Epidemia de poliomielitis 1952: Bjorn Ibsen introduce ventilación a presión positiva

DEFINICIÓN DE VM Todo procedimiento de respiración artificial que emplea un aparato mecánico para ayudar o sustituir la función respiratoria, pudiendo además mejorar la oxigenación e influir en la mecánica pulmonar.

OBJETIVOS DE LA VM La VM es un medio de soporte vital que tiene como fin el sustituir o ayudar temporalmente a la función respiratoria

Conservar la ventilación alveolar Evitar el deterioro mecánico pulmonar

Objetivos fisiológicos de la VM Mantener el intercambio gaseoso Proporcionar VA adecuada o al nivel elegido Mejorar la oxigenación arterial Incrementar el volumen pulmonar Abrir y distender vía aérea y alvéolos Aumentar la CRF Reducir el trabajo respiratorio

Objetivos clínicos de la VM Mejorar la hipoxemia Corregir la acidosis respiratoria Aliviar la disnea y el discomfort Prevenir o desaparecer atelectasias Revertir la fatiga de los músculos respiratorios Permitir la sedación y el bloqueo n-m Disminuir el VO2 sistémico y miocárdico Reducir la PIC Estabilizar la pared torácica

Fisiología Básica

Vía Aérea de Conducción Función de Conducción, purificación, humidificación y calentamiento del aire inspirado. Vía aérea alta: Nariz ,faringe y laringe. Vía aérea baja: Traquea y árbol bronquial

Vía Aérea de Conducción El árbol bronquial se ramifica en bronquios que poseen cartílagos en sus paredes: 1-2-3 Generaciones. Bronquilos-Generaciones 4-16 Bronquiolo Terminal generación 16

Unidad Respiratoria Zona del pulmón que depende de un bronquiolo Terminal. Dan lugar a los bronquiolos respiratorios-generaciones 17-19 que se continúan con los conductos alveolares 20-22 y los sacos alveolares -23. Cada saco alveolar termina en 10-16 alvéolos donde se efectúa la transferencia de gases

Intersisticio alveolar Tejido conjuntivo en donde se encuentran los capilares formando un retículo que envuelve a los alvéolos. El intercambio de gases se realiza a través del epitelio alveolar y el endotelio capilar cada estrato con sus respectivas membranas básales.

En la pared alveolar se encuentran neumocitos tipo I de revestimiento y ocupan el 93% de la superficie alveolar y neumocitos tipo II que tapizan el 7% restante produciendo el surfactante pulmonar.

Regulación de la Respiración Centro Bulbar: Neuronas que se comportan como quimioreceptores ajustando frecuencia y profundidad de la ventilacion Centros neuronales del puente:Actuan sobre el centro bulbar para controlar el ritmo de la respiracion

Ventilación Alveolar. Entrada y salida de aire de los pulmones. Ventilación mecánica. Es el producto de la interacción entre un ventilador y un paciente Volumen. Flujo. Presión. Tiempo.

Volumen Minuto-Cantidad de aire que entra y sale de la nariz o de la boca por minuto. Espacio Muerto Anatómico-Volumen de aire que se queda en las vías aéreas de conducción. Espacio Muerto Alveolar. Espacio Muerto Fisiológico.

Flujo Sanguíneo bronquial arterial del VI (arterias bronquiales) Flujo Sanguíneo Pulmonar por sangre venosa

El 50% de la resistencia aérea se encuentra en la vía aérea alta. Vía aérea baja 50%. Traquea 80% y sistema bronquial hasta la 8 generación. 20% Bronquios menores de 2 mm

Resistencias vasculares pulmonares. Arteria Pulmonar 1/3. Capilares Pulmonares 1/3. Venas Pulmonares 1/3.

Áreas de West. Región I Apical-La presión alveolar es mayor a la arterial y venosa. Región II-La presión arterial es mayor que la venosa y la alveolar. Región III-La presión arterial es mayor que la venosa y alveolar

Corto Circuito Fisiológico. Corto Circuito Anatómico. Corto circuito Intra pulmonar Absoluto.

Trabajo Elástico:Retracción Elástica de la caja torácica , pulmón y tensión Superficial. Trabajo No elástico:Trabajo necesario para vencer las resistencia de la vía aérea

Volúmenes y Capacidades Pulmonar Total (5800 ml) Capacidad vital (4600 ml) Capacidad Inspiratoria (3500 ml) Volumen de reserva inspiratoria (3000 ml) Volumen Corriente 450-550 ml Capacidad Funcional Residual (2300 ml) Volumen de reserva espiratoria (1100 ml) Volumen residual (1200 ml Volumen residual (1200 ml)

Generalidades del Ventilador Generador de presión

20 P via aerea cmH2O -10 Insp Espira Insp Espira Presión via aerea Dueñas C. Ventilación mecánica en el paciente crítico, 2004 20 P via aerea cmH2O Presión via aerea Presión pleural -10 Insp Espira Insp Espira

Efectos Cardiovasculares Precarga del VD disminuye Disminuye retorno venoso (hipovolemia) En pulmonares normales la postcarga del VD no se modifica En pulmones patológicos (rígidos) suben las resistencias vasculares pulmonares y por ende la postcarga del VD Dueñas C. Ventilación mecánica en el paciente crítico, 2004

Efectos Cardiovasculares El llenado del VI baja por incremento en la postcarga del VD Desplazamiento anómalo del septum interventircular Reducción del gasto cardiaco Estos cambios se hacen menos pronunciados durante la espiración (presión intratorácica = atmosférica) Dueñas C. Ventilación mecánica en el paciente crítico, 2004

Fases de la Ventilación Mecánica Insuflación Gradiente de presión Presión máxima = presión pico Meseta Gas introducido es mantenido = pausa Homogeneizar distribución Se genera una situación estática = presión meseta (presión alveolar máxima = dependiente de la distensibilidad alveolar Alvar Net, Benito H. Ventilación mecánica, 1999

Fases de la Ventilacion Mecanica Deflación Vaciado pulmonar = pasivo Se iguala la presión alveolar con atmosférica PEEP Alvar Net, Benito H. Ventilación mecánica, 1999

Ciclado (limita el ciclo respiratorio) Volumen Tiempo Flujo

Flujo-Volumen Flujo Presión Vía Aerea Insp Espir Pausa Limite de volumen Flujo Tiempo programado Presión Vía Aerea Pausa Insp Espir Alvar Net, Benito H. Ventilación mecánica, 1999

Ventilador Barométrico Se programa la presión y la inspiración termina al alcanzar dicho valor. Flujo Presión Vía Aerea Limite de volumen Insp Espir Alvar Net, Benito H. Ventilación mecánica, 1999

Modos de Ventilación Determinar la necesidad de suplir total o parcialmente la funcion ventilatoria Controlado Asistido Espontáneo Pacin J. Terapia Intensiva, 2000

Controlado Sustitución total de la función Presión Control Volumen Control

Asistidos Suplir función parcial SIMV

Espontáneos Función respiratoria conservada CPAP Presión soporte BiLevel Tubo en T

Presión negativa que resulta de la inspiración del paciente Ventilación mecánica asistida Presión Vía Aerea Periodo de control Presión negativa que resulta de la inspiración del paciente Tiempo Pacin J. Terapia Intensiva, 2000

SIMV Presión Vía Aerea Tiempo Pacin J. Terapia Intensiva, 2000

Asisto-Control Indicaciones Combina seguridad de ventilación controlada con posibilidad de sincronizar el ritmo respiratorio del paciente con el ventilador Asegura soporte ventilatorio en cada respiración Alvar Net, Benito H. Ventilación mecánica, 1999

Asisto-Control Indicaciones Reduce la necesidad de sedación Previene la atrofia de los músculos respiratorios Alvar Net, Benito H. Ventilación mecánica, 1999

Asisto-Control Desventajas Trabajo excesivo si el impulso respiratorio es alto y el pico de flujo o la sensibilidad no es adecuada. En despiertos la duración de ciclos no coincide con la programada del ventilador, por lo que hay que sedar al paciente. Alcalosis respiratoria Alvar Net, Benito H. Ventilación mecánica, 1999

Asisto-Control Desventajas Puede aumentar el atrapamiento aéreo y aumentar el PEEP Alvar Net, Benito H. Ventilación mecánica, 1999

Auto-PEEP En ventilación mecánica muchos pacientes pueden tener vaciado incompleto (limitación al flujo o tiempo espiratorio corto o volumenes altos Insuflación comienza antes de terminada la exhalación Flujo espiratorio final no llega a cero Atrapamiento de aire Alvar Net, Benito H. Ventilación mecánica, 1999

Auto-PEEP Pulmón no alcanza su posición de reposo posición de reposo o volumen de equilibrio estático. P alveolar permanece positiva al final de la espiración PEEP intrínseca o auto PEEP Alvar Net, Benito H. Ventilación mecánica, 1999

Auto-PEEP P via aerea Auto-PEEP Tiempo Pacin J. Terapia Intensiva, 2000

SIMV Indicaciones Retiro de la ventilación mecánica Asegurar un nivel mínimo de ventilación (volumen mandatorio prefijado) Realizar trabajo respiratorio variable según su propia demanda y capacidad pudiendo oscilar desde soporte mecánico total a una respiración espontánea completa Pacin J. Terapia Intensiva, 2000

SIMV limitación Principal es ventilación espontánea inadecuada por parte del paciente. No garantiza disminución del trabajo respiratorio NO ha demostrado acortar el tiempo de destete con respecto a tubo en T, ni CPAP Apoyo inspiratorio al destete Pacin J. Terapia Intensiva, 2000

Indicaciones Decisión clínica Observación frecuente del enfermo y ver tendencia evolutiva Pacin J. Terapia Intensiva, 2000

Criterios a Valorar Estado mental Agitación Confusión Inquietud Trabajo respiratorio excesivo o abatido (>35 rpm o < 6 rpm) Tiraje o uso de músculos accesorios Signos faciales Pacin J. Terapia Intensiva, 2000

Criterios a Valorar Fatiga de los músculos respiratorios Asincronia toracoabdominal Paradoja Abdominal Agotamiento del paciente Imposiilidad de descanso o sueño Cianosis con FiO2 > 50% Pacin J. Terapia Intensiva, 2000

Criterios a Valorar Agotamiento general del paciente Hipoxemia Imposibilidad para el descanso o sueño Hipoxemia PaO2 < 60 mmHg Saturación < 90 mmHg PaO2/FiO2 < 200 Hipercapnia progresiva PaCO2 > 50 mmHg Pacin J. Terapia Intensiva, 2000

Criterios a Valorar Acidosis Capacidad vital baja pH < 7.25 Capacidad vital baja < 10 ml/kg de peso Fuerza inspiratoria disminuida < -25 cmH2O Pacin J. Terapia Intensiva, 2000

Iniciación y Mantenimiento Volumen corriente de 8 ml/kg 6-8 ml/kg Volúmenes medios a bajo Evitar sobredistensión alveolar Frecuencia respiratoria de 12 ciclos/min 8-15 ciclos/min Borgstein J. Chest 2001: 321, 120-127

Iniciación y Mantenimiento FiO2 Ajustar para lograr PaO2 > 60 o saturación de O2 > 90% Procurar que sea menor del 50% (tóxica) Conexión urgente = 100% Flujo inspiratorio de 40 a 60 lt/min Borgstein J. Chest 2001: 321, 120-127

PEEP No > 15 cm H2O Inicio: Efectos adversos: 5 cm H2O, incrementos de 3-5 El efecto de reclutamiento -óptimo- puede tardar horas en aparecer Monitorizar TA, FC, PaO2-SaO2 Efectos adversos: Volutrauma Hipotensión y caída del gasto cardiaco Aumento de la PaCO2 Peor oxigenación Pacin J. Terapia Intensiva, 2000

Iniciación y Mantenimiento Presión Alveolar < 30 cmH2O Prevenir barotrauma Los determinantes primarios de la oxigenación durante VM son la FiO2 y la Presión Media en la vía aérea. Pacin J. Terapia Intensiva, 2000

Iniciación y Mantenimiento Relación Inspiración:Espiración 1:2 normal Tiempo inspiratorio es de 25-30% del ciclo, para que el vaciado pulmonar sea completo. AC o SIMV: determinado x VT y flujo Pacin J. Terapia Intensiva, 2000

Desadaptado no si Ventilar de otra forma Programación correcta? Compromiso brusco de la ventilación - oxigenación no si Parámetros básicos adecuados Persiste desadaptado Fugas o falla técnica??? Tubo traqueal Parametros adicionales (PEEP) Complicaciones Cambio estado fisiológico Broncoespasmo, neumotorax, atelectasias Relajación Sedación Dolor Pacin J. Terapia Intensiva, 2000