La descarga está en progreso. Por favor, espere

La descarga está en progreso. Por favor, espere

SUBCONJUNTOS DE LOS NÚMEROS CARDINALES. NÚMEROS PARES E IMPARES Números Pares = {2, 4, 6, 8, 10, 12, 14, 16,...}, los cuales se pueden representar algebraicamente.

Presentaciones similares


Presentación del tema: "SUBCONJUNTOS DE LOS NÚMEROS CARDINALES. NÚMEROS PARES E IMPARES Números Pares = {2, 4, 6, 8, 10, 12, 14, 16,...}, los cuales se pueden representar algebraicamente."— Transcripción de la presentación:

1 SUBCONJUNTOS DE LOS NÚMEROS CARDINALES

2 NÚMEROS PARES E IMPARES Números Pares = {2, 4, 6, 8, 10, 12, 14, 16,...}, los cuales se pueden representar algebraicamente como 2n, por ser todos ellos múltiplos de 2. Ejemplo de número par expresado de la forma 2n Número 2n. 28 2  14 56 2  28 114 2  57

3 Números Impares = {1, 3, 5, 7, 9, 11, 13, 15,...} ¿Cómo se representan algebraicamente? Tenemos dos opciones (2n + 1) ó (2n - 1). Estas representaciones algebraicas las utilizaremos permanentemente, así que no la olvide. Ejemplo de número impar expresado de la forma 2n + 1 Número 2n + 1 29 2  14 +1 57 2  28 + 1 115 2  57 + 1

4 NÚMEROS PRIMOS Números Primos: Un número, mayor o igual a 2, es primo cuando es divisible solamente por 1 y por sí mismo. Por ejemplo: El 3 es primo ya que sólo es divisible por 1 y por 3. El 12 no es primo ya que es divisible por 1, por 2, por 3, por 4, por 6 y por 12. Los números naturales mayores que 1 que no son primos se llaman números compuestos, o sea el 12 es un número compuesto.

5 NÚMEROS COMPUESTOS Números compuestos: son números enteros positivos distintos de 1 que se puede descomponer por 1, por sí mismo y por otro factor. Ejemplo: El 4 es compuesto porque se puede descomponer por 1, por 4 y por 2. El número “ 1 ” no es primo ni compuesto.

6 ¿CÓMO DISPONER LOS NÚMEROS PRIMOS Y COMPUESTOS EN ARREGLOS BIDIMENSIONALES ? Números Primos ● ● 2 2*1 ● ● ● 3 3*1 ● ● ● ● ● 5 5*1 ● ● ● ● ● ● ● 7 7*1 Los números primos sólo se pueden disponer en 1 arreglo bidimensional.

7 Números Compuestos ● ● ● ● 4 4*1 ● ● 4 2*2 ● ● ● ● ● ● ● ● ● ● ● ● ● ● 12 12*1 ● ● ● ● ● ● ● ● ● ● ● ● 12 6*2 ● ● ● ● ● ● ● ● 12 3*4 ● ● ● ● Los números compuestos se pueden disponer en más de un arreglo bidimensional.

8 DESCOMPOSICIÓN EN FACTORES PRIMOS Los números compuestos, pueden ser expresados como la multiplicación indicada de sus factores primos, elevados a exponentes enteros y positivos. 36 6 x 6 2 x 3 x 2 x 3 = 2 x 2 x 3 x 3 = 2 2 x 3 2 Descomponga el número 480 en factores primos.

9 MÚLTIPLOS Y DIVISORES Múltiplo: Se llama múltiplo de un número a aquel que obtenemos al multiplicar ese número por otro cualquiera. Decimos que un número es múltiplo de otro si le contiene un número entero de veces. - El número cero tiene un solo múltiplo, que es el 0. Los demás números naturales tienen infinitos múltiplos. ( 0 x 1 = 0; 0 x 2 = 0; …… ) - El número cero es múltiplo de todos los números. M 2=  0, 2, 4, …. 

10 Todos los números son múltiplos de 1. ( M (1) = 1, 2, 3, 4, ….) - Los múltiplos de dos terminan en 0, 2, 4, 6, 8 - Los múltiplos de 2 se pueden representar como “2n”, siendo “n” un número cardinal cualquiera. - Los múltiplos de 3 se pueden representar como “3n”, siendo “n” un número cardinal cualquiera. M (4) =  0, 4, 8, 12, 16, ….) M (7) =  0, 7, 14, 21, 28, …  El conjunto de múltiplos de un número es infinito

11 Divisor: es el número que divide exactamente a otro. El divisor de un número es equivalente con un factor del mismo número, ya que como hemos visto la división es la operación inversa de la multiplicación. Ejemplo: 12 : 4 = 3 cuociente Dividendo Divisor 4 x 3 = 12Producto Factor Factor

12 D (12) =  1, 2, 3, 4, 6, 12  D (18) =  1, 2, 3, 6, 9, 18  El conjunto de divisores de un número es finito. Hay números que son divisibles por varios números a la vez. El 12 es divisible por 1, 2, 3, 4, 6 y 12

13 Hay números que sólo son divisibles por 1 y por sí mismos. Ejemplo: El 13 es divisible por 1 y por 13 ¿Cuáles son los divisores de 24? y ¿Cuáles son los factores de 24? La división es la operación inversa de la multiplicación. Son divisores de 24 los mismos que sus factores.

14 Divisibilidad de los Números Un número es divisible por otro cuando éste lo contiene un número entero de veces, dejando resto cero. 15 : 5 = 3  15 es divisible por 5 ( 5 es divisor de 15) 0// 15 : 6 = 2  15 no es divisible por 6 3//

15 NÚMEROCRITERIOEJEMPLO 2 Un número es divisible por 2 cuando termina en cero o cifra par. 238: porque "8" es par. 630 porque termina en cero 3 Un número es divisible por 3 cuando la suma de sus cifras es un múltiplo de 3. 480: porque 4+8+0 = 12 es múltiplo de 3. 4 Un número es divisible por 4 cuando las dos últimas cifras son 00 ó múltiplo de 4. 7324: porque 24 es múltiplo de 4. 5600: las dos últimas cifras son ceros. 5 Un número es divisible por 5 cuando la última cifra es 0 ó 5. 480, 565 6 Un número es divisible por 6 cuando el número es divisible por 2 y por 3 la vez. 24: es divisible por 2 porque termina en número par y es divisible por 3 porque 2+4= 6 y 6 es múltiplo de 3

16 NÚMEROSCRITERIOSEJEMPLO 9 Un número es divisible por 9 cuando la suma de sus cifras es múltiplo de 9. 3744: porque 3+7+4+4= 18 es múltiplo de 9. 10 Un número es divisible por 10 cuando la última cifra es 0. 470: La última cifra es 0.

17 ¿Para qué sirven los múltiplos y los divisores? Los múltiplos de dos o más número sirven para calcular el m.c.m., para poder sumar o restar fracciones de distinto denominador, para resolver problemas,…. (Los divisores de un número se trabajan en relación a las diferentes maneras en que se puede repartir, dividir una colección o medida en partes iguales, (m.c.d.).

18 MÍNIMO COMÚN MÚLTIPLO Y MÁXIMO COMÚN DIVISOR Existe un número que es múltiplo de todos los números cardinales: el cero (0). También encontramos múltiplos de varios numerales a la vez, se llaman múltiplos comunes. 18 es múltiplo de 1, 2, 3, 6, 9 y 18. MÍNIMO COMÚN MÚLTIPLO (m.c.m), El Mínimo Común Múltiplo de dos o más números es el menor de los múltiplos comunes de esos números. El m.c.m. es importante en la resolución de problemas y en el estudio de las fracciones.

19 Observa el siguiente ejemplo: buscaremos el m.c.m. de 6, 8 y 12. a) 6 – 8 – 12

20 b) Factorización de cada número en factores primos: 6 = 2 x 3 8 = 2 x 4 12 = 2 x 6 2 x 2 x 2 2 x 2 x 3 2 x 3 2 3 2 2 x 3 De cada base igual se considera la que tiene mayor exponente: 2 3 x 3 = 2 x 2 x 2 x 3 = 24 m.c.m. = 24

21 c) Múltiplos, múltiplos comunes y mínimo común múltiplo. M (6) =  0,6,12,18,24,30,36,42,48,54,60,66,72,78…} M (8 ) =  0, 8, 16, 24, 32, 40, 48, 56,64, 72, 80,….  M (12) =  0, 12, 24, 36, 48, 60, 72, 84,96, ….  m.c.m. (6,8,12) = 24

22 ● Divisor es el número que divide exactamente a otro. Equivale a ser factor de un numeral, pues, como hemos visto, la división es la operación inversa de la multiplicación. Son divisores de 12 los mismos que sus factores. D (12) = { 1, 2, 3, 4, 6, 12 } D (16) = { 1, 2, 4, 8, 16 } D ( 20) = { 1, 2, 4, 5, 10, 20}

23 Al observar los ejemplos, comprobamos que el 1 es divisor en los tres ejemplos. Esta relación la cumple con todos los números cardinales. También hay divisores comunes para dos o más numerales, dentro de estos se destacan el mínimo y el máximo común divisor. El Máximo común divisor (m.c.d.) o máximo factor común( m.f.c) es el mayor de ellos, distinto de 1. m.c.d. (12, 16 y 20) =  4 


Descargar ppt "SUBCONJUNTOS DE LOS NÚMEROS CARDINALES. NÚMEROS PARES E IMPARES Números Pares = {2, 4, 6, 8, 10, 12, 14, 16,...}, los cuales se pueden representar algebraicamente."

Presentaciones similares


Anuncios Google