La descarga está en progreso. Por favor, espere

La descarga está en progreso. Por favor, espere

Universidad de Concepción Facultad de Ciencias Químicas

Presentaciones similares


Presentación del tema: "Universidad de Concepción Facultad de Ciencias Químicas"— Transcripción de la presentación:

1 Universidad de Concepción Facultad de Ciencias Químicas
Química General para Ingeniería Unidad 6 Tema: Termoquímica UdeC/FCQ/P.Reyes Unidad 6

2 Unidad 6. Termoquímica. 6.1. Definiciones: sistema, límite, ambiente. Primera ley de la termodinámica, calor, trabajo. Intercambios de calor en cambios químicos. Calorimetría. Entalpía y DH de cambios. Reacción de formación y Entalpía estándar de formación. 6.6. Cálculos de DH para cambios físicos y para cambios químicos, ley de Hess. UdeC/FCQ/P.Reyes Unidad 6

3 6. 1. Definiciones: sistema, límite, ambiente
6.1. Definiciones: sistema, límite, ambiente. Primera ley de la termodinámica, calor, trabajo. Todos los cambios que experimenta la materia, sean físicos o químicos, deben satisfacer principios fundamentales: - conservación de la masa - conservación de la energía Un área importante en el estudio de las ciencias es la Termodinámica y un aspecto de este estudio, relacionado con los cambios químicos, es la Termoquímica. UdeC/FCQ/P.Reyes Unidad 6

4 Termodinámica Termoquímica El propósito de la Termodinámica es investigar de for-ma lógica las relaciones entre las diferentes clases de energía y sus manifestaciones diversas. Las leyes de la termodinámica rigen la transformación de un tipo de energía en otro. La Termoquímica estudia los intercambios de energía (en forma de calor) asociados a las reacciones químicas. UdeC/FCQ/P.Reyes Unidad 6

5 Cuando se funde la nieve ésta absorbe energía. etc.
Ejemplos de cambios y su relación con energía: En incendio forestal la madera se convierte en cenizas y gases y se libera gran cantidad de energía como calor y luz. Parte de la energía de un rayo puede ser absorbida por N2 y O2 para formar NO. Cuando se funde la nieve ésta absorbe energía. etc. UdeC/FCQ/P.Reyes Unidad 6

6 SISTEMA: es la parte del universo que se estudia.
Definiciones SISTEMA: es la parte del universo que se estudia. LÍMITE: es lo que separa al sistema del resto del universo (puede ser real o ficticio) AMBIENTE: el resto del universo. ( El ambiente también suele llamarse alrededores o entorno) . UdeC/FCQ/P.Reyes Unidad 6

7 SISTEMA LÍMITE AMBIENTE Universo UdeC/FCQ/P.Reyes Unidad 6

8 SISTEMA, LÍMITE Y AMBIENTE
UdeC/FCQ/P.Reyes Unidad 6

9 Los sistemas se clasifican, según ellos puedan o no intercambiar materia y/o energía con el ambiente, en: Sistema se denomina Puede intercambiar materia energía Abierto si Cerrado no Aislado UdeC/FCQ/P.Reyes Unidad 6

10 Primera ley de la Termodinámica.
La primera ley de la Termodinámica es el principio fundamental que establece la conservación de la energía. La energía del universo es constante. Lo anterior significa que la energía sólo puede transferirse de una parte del universo a otra parte de éste y se puede expresar: EUNIVERSO = ESISTEMA + EAMBIENTE = constante UdeC/FCQ/P.Reyes Unidad 6

11 - CALOR, ( se designa por “q”) - TRABAJO, (se designa por “w”)
La energía es POTENCIAL o CINÉTICA, y estas formas son convertibles una en otra. La energía de un sistema se denomina energía interna y se designa por E. (La teoría atómica moderna permite considerar otras formas de energía – eléctrica, solar, nuclear y química – como ejemplos de energía cinética y potencial a escalas moleculares y atómicas). Cualquiera de estos tipos de energía cuando se transfieren del sistema al ambiente, o viceversa, lo hacen en dos formas: - CALOR, ( se designa por “q”) - TRABAJO, (se designa por “w”) UdeC/FCQ/P.Reyes Unidad 6

12 ¿Cuándo se transfiere energía?
Cuando la energía se transfiere de un objeto a otro, ésta aparece como TRABAJO y/o CALOR. ¿Cuándo se transfiere energía? La energía sólo se transfiere sólo DURANTE un CAMBIO DE ESTADO que experimente un sistema. UdeC/FCQ/P.Reyes Unidad 6

13 Otras definiciones. ESTADO de un sistema: es una situación perfectamente definida del sistema. Se le define dando valores a cierto número mínimo de propiedades del sistema. Ejemplos: 1) H2O ( s, 1 kg, 1 atm, -10°C) 2) O2 ( g, 2L, 400 torr, 300 K) Definido el estado del sistema éste es único. UdeC/FCQ/P.Reyes Unidad 6

14 El cambio de estado de un sistema se escribe:
CAMBIO DE ESTADO de un sistema: se define dando dos estados de un sistema tales que ellos difieran en al menos una propiedad. El cambio de estado de un sistema se escribe: Estado Estado 2 Ejemplos: H2O(s, 18 g, 1 atm, 0°C) H2O(s, 18 g, 1 atm, -5°C ) C2H4(g) C2H2(g) + H2(g) UdeC/FCQ/P.Reyes Unidad 6

15 Sólo mientras esté ocurriendo un cambio de estado se produce una transferencia de energía entre el sistema y su ambiente. Dependiendo del cambio de estado, la transferencia de energía puede ser de sistema a ambiente o de ambiente a sistema. (dirección) Dependiendo de los límites que encierran al sistema, la transferencia de energía puede ser sólo como calor, sólo como trabajo o ambas. (forma). UdeC/FCQ/P.Reyes Unidad 6

16 TRANSFERENCIA DE ENERGÍA
Energía, E SISTEMA inicial final Einicial Efinal El sistema experimenta una variación de energía DE. Esta se define por: DE = Efinal - Einicial Para el sistema: DE < 0 debido a que Efinal < Einicial El sistema transfiere energía hacia el ambiente. DE Energía pasa al ambiente UdeC/FCQ/P.Reyes Unidad 6

17 debido a que Efinal > Einicial La energía pasa del ambiente
DE del sistema es > 0 debido a que Efinal > Einicial La energía pasa del ambiente al sistema Energía, E Estado inicial final Efinal Einicial UdeC/FCQ/P.Reyes Unidad 6

18 El signo de q y w se define desde el punto de vista del sistema.
La dirección de la transferencia de energía se representa por un signo y la convención es la siguiente: El signo de q y w se define desde el punto de vista del sistema. SISTEMA q < 0 w < 0 q > 0 w > 0 ambiente UdeC/FCQ/P.Reyes Unidad 6

19 La primera ley de la termodinámica se formula:
Si entra q y w a un sistema éste aumenta su energía en DE. Si sale q y w de un sistema éste disminuye su energía en DE. DE = q + w UdeC/FCQ/P.Reyes Unidad 6

20 TRANSFERENCIA DE ENERGÍA
CALOR Y TRABAJO UdeC/FCQ/P.Reyes Unidad 6

21 Intercambio de CALOR solamente
H2O caliente Tsistema Tsistema > Tambiente Tambiente DE < 0 H2O Temp amb Tsistema = Tambiente Tsistema = Tambiente H2O Temp amb Tsistema Tambiente Einicial Efinal Energía, E Energía, E Calor (q) transferido hacia el ambiente (q < 0) Calor (q) transferido desde el ambiente (q > 0) Tsistema < Tambiente DE > 0 H2O helada Tsistema Efinal Tambiente Einicial UdeC/FCQ/P.Reyes Unidad 6 A B

22 Cuando se produce un cambio de volumen en el siste- ma, en contra de una presión externa o debido a una presión externa, se intercambia energía a la forma de trabajo llamado “trabajo presión-volumen”, wpv. w < 0 w > 0 La expansión de un sistema produce trabajo en el ambiente (w<0) y la compresión de él implica recibir trabajo desde el ambiente, (w>0). GAS P ambiente UdeC/FCQ/P.Reyes Unidad 6

23 Intercambio de TRABAJO solamente.
Reacción de Zn(s) + 2H+(ac) = H2(g) + Zn2+(ac) La reacción de relizada en un recipiente provisto de un pistón, libera trabajo hacia el ambiente. Patm Sistema HCl(ac) Zn(s) Einicial Energía, E PH2 Patm Trabajo (W) realizado sobre el ambiente (W<0) DE = w < 0 Sistema H2(g) ZnCl2(ac) Efinal UdeC/FCQ/P.Reyes Unidad 6

24 Signos de q, w y DE para el sistema:
+ w = + + + - - - - + Depende de magnitud de q y w - + Depende de magnitud de q y w UdeC/FCQ/P.Reyes Unidad 6

25 Caloría (cal): Las unidades más frecuentes para expresar la energía
son: Caloría (cal): Cantidad de energía necesaria para elevar la temperatura de 1 g de agua desde 14,5 a 15,5 ºC, a 1 atm 1(cal) = 4,184 J También se usan los múltiplos kJ y kcal. La Caloría usada en nutrición corresponde a 1 kcal. UdeC/FCQ/P.Reyes Unidad 6

26 Ordenes de magnitud de ENERGÍAS.
1018 1024 1021 10-6 10-12 1015 1012 109 106 103 100 10-3 10-9 10-15 10-18 10-21 Energía solar que recibe la Tierra por día E (J) Energía de un terremoto Producción eléctrica diaria del embalse Colbún Combustión de 1000 toneladas de carbón Explosión de 1 tonelada de TNT 1 Kilowatt-hora de energía Calor liberado de la combustión de 250 g de glucosa 1 caloría (4,184 J) Calor absorbido en la división de una célula bacteriana Energía de la fusión de 1 átomo de 235U UdeC/FCQ/P.Reyes Unidad 6 Energía cinética de una molécula.

27 6.2. Intercambio de calor en reacciones químicas.
Las reacciones químicas son cambios de estado con alteración de la naturaleza de las sustancias, por lo tanto ellas ocurren con intercambio de energía. Generalmente las reacciones se realizan a P y T constantes y dentro de límites que permiten que el intercambio de energía se manifieste en la forma de calor. UdeC/FCQ/P.Reyes Unidad 6

28 La reacción se puede representar por: Reactantes = Productos
P,T Durante la reacción puede: entrar energía en forma de calor al sistema (q > 0) o salir energía en forma de calor del sistema (q < 0) Una reacción química consiste en ruptura de enlaces y formación de nuevos enlaces entre átomos o entre iones. El calor absorbido o liberado en una reacción está relacionado con las energías involucradas en los enlaces. UdeC/FCQ/P.Reyes Unidad 6

29 La cantidad de calor que se intercambia durante una reacción puede ser medida experimentalmente.
La técnica de medición de una cantidad de calor se denomina Calorimetría. UdeC/FCQ/P.Reyes Unidad 6

30 medir la cantidad de calor intercambiada entre sistema y ambiente.
Calorimetría. Consiste en: hacer un cambio con cantidad de sistema conocida, en un ambiente conocido. medir la cantidad de calor intercambiada entre sistema y ambiente. El experimento se hace en un “equipo” llamado CALORÍMETRO. (Los hay de varios tipos). ¿Cómo se procede? UdeC/FCQ/P.Reyes Unidad 6

31 Un ejemplo de CALORIMETRO.
Termómetro Agitador Sistema Ambiente (agua) Vaso de paredes de material aislante térmico. El intercambio de calor ocurre sólo entre SISTEMA y AMBIENTE. UdeC/FCQ/P.Reyes Unidad 6

32 CALORÍMETRO DE BOMBA Agitador motorizado + Fuente eléctrica -
Termómetro Sistema (sustancia combustible y oxígeno comprimido) Camisa de aislación Bomba con revestimiento de acero Baño de agua Espiral de ignición Calor transferido UdeC/FCQ/P.Reyes Unidad 6

33 Esquematizando el intercambio de calor, q, entre sistema y ambiente (al interior de un calorímetro), se tiene: T DT=Tfinal -Tinicial y se verifica que SISTEMA AMBIENTE q q = C DT UdeC/FCQ/P.Reyes Unidad 6

34 q es la cantidad de calor intercambiada
En la relación: q = C DT q es la cantidad de calor intercambiada C es la capacidad calórica del calorímetro (agua, termómetro, agitador, …) DT es la variación de temperatura del conjunto (sistema y ambiente) = Tfinal - Tinicial Capacidad calórica de un objeto: corresponde a la cantidad de calor necesaria para variar su temperatura en 1°C. Tiene dimensiones de energía/°C = energía/K UdeC/FCQ/P.Reyes Unidad 6

35 La capacidad calórica de un calorímetro es la cantidad de calor necesaria para variar en 1°C (o en 1K) la temperatura del calorímetro. El ambiente dentro del calorímetro está formado por diversos materiales: termómetro, agitador, fluido (generalmente agua), otros … , por lo tanto, es necesario determinar la capacidad calórica del calorímetro en forma experimental. El experimento que se realiza en el calorímetro y que tiene por finalidad determinar su capacidad calórica se denomina “calibración del calorímetro”. UdeC/FCQ/P.Reyes Unidad 6

36 y en consecuencia: q = m s DT
Si el objeto está formado por una clase de sustancia, la capacidad calórica se puede expresar como el producto de la masa, m, del objeto y su calor específico, s. Así: C = m s y en consecuencia: q = m s DT Calor específico de una sustancia, s: corresponde a la cantidad de calor necesaria para variar en 1°C la temperatura a 1 g de la sustancia. Tiene dimensiones de energía/g °C = energía/g K UdeC/FCQ/P.Reyes Unidad 6

37 Algunos valores de calor específico de sustancias: SUSTANCIA
s (J/g K) = (J/g °C) Al(s) Cu(s) H2O(l) C2H5OH(l) Madera Cemento vidrio 0,900 0,387 4,184 2,46 1,76 0,88 0,84 UdeC/FCQ/P.Reyes Unidad 6

38 De las definiciones de s y de c, para una sustancia se tiene que:
También se define la capacidad calórica molar, c, de una sustancia como la cantidad de calor necesario para variar en 1°C la temperatura de 1 mol de la sustancia. De las definiciones de s y de c, para una sustancia se tiene que: c (J/mol °C) = s (J/g °C) x M (g/mol) Por ejemplo para H2O: c = 4,184 (J/g °C) x 18,016 (g/mol) c = 75,379 (J/mol °C) UdeC/FCQ/P.Reyes Unidad 6

39 q = m s DT “m”= gramos de sustancia o
Según se use “s”(calor específico) o “c”(capacidad calórica molar), la expresión para calcular la cantidad de calor que absorbe o que libera una sustancia se escribe: q = m s DT “m”= gramos de sustancia o q = n c DT “n” moles de sustancia UdeC/FCQ/P.Reyes Unidad 6

40 ¿Qué cantidad de calor necesita?
Problema 1. Se desea elevar la temperatura de 3 L de agua desde 12, 5 °C hasta 90°C. ¿Qué cantidad de calor necesita? La cantidad de calor calculada en a) ¿entra o sale del sistema? Solución Tinicial = 12,5°C Tfinal = 90°C 3 L agua 3 L agua UdeC/FCQ/P.Reyes Unidad 6

41 a) la cantidad de calor se calcula con la relación: q = m s DT
b) q resulta positivo, luego la cantidad de calor calculada entra al agua (pasa del ambiente al sistema) UdeC/FCQ/P.Reyes Unidad 6

42 ¿qué cantidad de calor intercambia con el ambiente?
Problema 2. Si el agua del problema anterior disminuyera su temperatura desde 90°C hasta 80°C, ¿qué cantidad de calor intercambia con el ambiente? La cantidad de calor calculada en a) ¿entra o sale del sistema? Solución Tinicial = 90°C Tfinal = 80°C 3 L agua 3 L agua UdeC/FCQ/P.Reyes Unidad 6

43 a) la cantidad de calor se calcula con la relación: q = m s DT
b) q resulta negativo, luego la cantidad de calor calculada sale del agua (pasa de sistema al ambiente). UdeC/FCQ/P.Reyes Unidad 6

44 q < 0 => DTsistema < 0
La cantidad de calor es algebraica. El signo de q queda determinado por el signo del DTsistena causado por el calor intercambiado. SISTEMA q < 0 => DTsistema < 0 (DTambiente> 0) q > 0 => DTsistema > 0 (DTambiente< 0) A M B I E N T E UdeC/FCQ/P.Reyes Unidad 6

45 Problema 3. 125 g de cobre recubren la superficie externa del fondo de una sartén. ¿Cuánto calor se requiere para aumentar la temperatura de esta capa de cobre desde 25°C hasta 300 ºC? El calor específico del cobre es 0,387 (J/g K) Resp: 13,3 kJ UdeC/FCQ/P.Reyes Unidad 6

46 Problema 4. Dentro de un calorímetro de capacidad calórica 2,310 kJ/°C, se hace la combustión completa de 0,500 g de un azúcar de fórmula C5H10O5. A consecuencia de la reacción, la elevación de temperatura del calorímetro y su contenido es 3,08 °C. Calcule el calor de combustión del azúcar y expréselo en kJ/mol. UdeC/FCQ/P.Reyes Unidad 6

47 El análisis del enunciado permite inferir:
Solución. El análisis del enunciado permite inferir: El sistema es el azúcar que se quema con oxígeno (combustión del azúcar). El ambiente es todo el interior del calorímetro que resta del sistema. Si el calorímetro eleva su temperatura a consecuencia de la combustión significa que el sistema (la reacción) LIBERA calor hacia el ambiente (calorímetro con sus accesorios), por lo tanto el calor de combustión del azúcar es negativo. UdeC/FCQ/P.Reyes Unidad 6

48 El calor liberado en la combustión se escribe:
Cálculo de la cantidad de calor absorbido por el calorímetro en la combustión de 0,500 g de C5H10O5 : El calor liberado en la combustión se escribe: qcombustión = -7,115 kJ por cada 0,500 g de azúcar. UdeC/FCQ/P.Reyes Unidad 6

49 Se pide expresar el calor de combustión en kJ/mol de azúcar, luego:
Respuesta : el calor de combustión de C5H10O5 es – kJ/mol UdeC/FCQ/P.Reyes Unidad 6

50 6.4. Entalpía y DH de cambios.
Los sistemas tienen una propiedad denomina-da ENTALPÍA, se designa por H, tiene dimensiones de energía. Todo cambio de estado de un sistema tiene asociado un cambio en la entalpía, DH. Sistema (inicial) Sistema (final) DH Cuando el cambio del sistema se hace a presión constante, el valor de DH corresponde a la cantidad de calor, q, intercambiada. q = DH cuando P = cte. UdeC/FCQ/P.Reyes Unidad 6

51 El DH recibe el mismo nombre de la reacción. Ejemplos:
Las reacciones químicas se hacen, general-mente, a P y T constantes, por lo tanto la can-tidad de calor intercambiada en estas condi-ciones corresponde al DH de la reacción. El DH recibe el mismo nombre de la reacción. Ejemplos: Reacción de … DH… formación combustión neutralización disociación etc. DHformación DHcombustión DHneutralización DHdisociación UdeC/FCQ/P.Reyes Unidad 6

52 6.5. Reacción de formación y Entalpía estándar de formación.
Se define REACCIÓN de FORMACIÓN de un compuesto a 1 atm y 25°C, como sigue: Es la reacción en la cual se forma 1 mol del compuesto a partir de los elementos que lo constituyen, estando estos elementos en el estado más estable que presentan a 1 atm y 25°C. UdeC/FCQ/P.Reyes Unidad 6

53 condiciones estándar de P y T corresponden a 1 atm y 25°C
El DH de la reacción de formación de un compuesto a 1 atm y 25°C se designa por el superíndice “o” indica 1 atm En TERMOQUÍMICA: condiciones estándar de P y T corresponden a 1 atm y 25°C UdeC/FCQ/P.Reyes Unidad 6

54 Ejemplos de reacciones de formación: Formación de H2O(l)
H2(g) + ½ O2(g) = H2O(l) DH°f H2O(l) 2) Formación de CO2(g) C(grafito) + O2(g) = CO2(g) DH°f CO2(g) 3) Formación de KBr(s) K(s) + ½ Br2(l) = KBr(s) DH°f KBr(s) UdeC/FCQ/P.Reyes Unidad 6

55 Por ejemplo, para la reacción de formación de H2O(l) a 1 atm y 25°C:
El DH de un cambio es: DH = Hfinal – Hinicial Por ejemplo, para la reacción de formación de H2O(l) a 1 atm y 25°C: H2(g) + ½ O2(g) = H2O(l) DHf H2O(l) se tiene que: UdeC/FCQ/P.Reyes Unidad 6

56 H°elemento(forma estable a 25°C) = 0
Las H de los elementos en su forma más estable a 25°C y 1 atm se definen = 0, esto es: H°elemento(forma estable a 25°C) = 0 Por lo tanto, en la ecuación: y en consecuencia: UdeC/FCQ/P.Reyes Unidad 6

57 Estos valores se encuentran tabulados en manuales.
Todos los compuestos y los elementos no estables a 1 atm y 25°C tienen un valor distinto de cero para su entalpía de formación que se simboliza por DH°f, 25°C . Estos valores se encuentran tabulados en manuales. UdeC/FCQ/P.Reyes Unidad 6

58 Ejemplos de valores de DH°formación a 25°C
Sustancia DH°f (kJ/mol) a 25°C CaO(s) CH3OH(l) HCl(g) NO(g) C(diamante) O3(g) S8(monoclínico) -635,1 -238,6 -92,3 90,3 1,9 143 2 UdeC/FCQ/P.Reyes Unidad 6

59 Interpretación del valor de DH de una reacción.
Usando como ejemplo la reacción de formación de CaO(s) a 1 atm y 25°C: Ca(s) + ½ O2(g) = CaO(s) DH = - 635,1 kJ Significa que: cuando ocurre la reacción el sistema libera calor (porque el signo de DH es negativo). la cantidad de calor que libera el sistema cuando reacciona 1 mol de Ca(s) con ½ mol de O2(g) para formar 1 mol de CaO(s) es 635,1 kJ. UdeC/FCQ/P.Reyes Unidad 6

60 El valor del DH de una reacción es válido para la estequiometría de la reacción.
Si la reacción se escribe: 2 Ca(s) + O2(g) = 2 CaO(s) DH= ,2 kJ por lo tanto cuando se forman 2 moles de CaO(s) se libera 1270,2 kJ. n (reacción) => n (DH) “n” puede ser entero o fraccionario, positivo o negativo. Si una reacción se multiplica por “n” el valor de DH también se multiplica por “n” UdeC/FCQ/P.Reyes Unidad 6

61 -Ca(s) - ½ O2(g) = - CaO(s) DH = 635,1 kJ
Si la reacción: Ca(s) + ½ O2(g) = CaO(s) DH = - 635,1 kJ se multiplica por –1 se obtiene: -Ca(s) - ½ O2(g) = - CaO(s) DH = 635,1 kJ que es equivalente a: CaO(s) = Ca(s) + ½ O2(g) DH = 635,1 kJ Multiplicar una reacción por –1 equivale a invertir la reacción y el DH cambia de signo. UdeC/FCQ/P.Reyes Unidad 6

62 se denomina “ecuación termoquímica” o “reacción termoquímica”.
Las reacciones que tienen DH negativo se denominan exotérmicas y las que tienen DH positivo se denominan endotérmicas. El conjunto se denomina “ecuación termoquímica” o “reacción termoquímica”. Ecuación de la Reacción DH UdeC/FCQ/P.Reyes Unidad 6

63 El cálculo se hace usando la Ley de Hess.
6.6. Cálculos de DH para cambios físicos y para cambios químicos. Ley de Hess. Una de las aplicaciones más poderosas de la propiedad entalpía (H) es que ella permite calcular el valor de DH de cualquier cambio de estado, aún si éste es imposible de realizarlo. El cálculo se hace usando la Ley de Hess. UdeC/FCQ/P.Reyes Unidad 6

64 El cambio de entalpía de un proceso completo es la suma de los cambios
Ley de Hess: El cambio de entalpía de un proceso completo es la suma de los cambios de entalpía de cada etapa del proceso. UdeC/FCQ/P.Reyes Unidad 6

65 Supongamos que se desea calcular DH para el cambio:
Estado Estado 2 DH = H2 – H1= ? y este cambio se puede hacer en etapas, por ejemplo: Estado Estado 2 Estado A Estado B Etapa I Etapa III Etapa II UdeC/FCQ/P.Reyes Unidad 6

66 La ley de Hess establece que el DH del cambio es equivalente a:
DH = DH etapa I + DH etapa II + DH etapa III Esta relación se puede verificar puesto que: DH etapa I = HA – H1 DH etapa II = HB – HA DH etapa III = H2 – HB y la suma de ellas conduce a: HA – H1 + HB – HA +H2 – HB = H2 – H1 = DH UdeC/FCQ/P.Reyes Unidad 6

67 Ejemplos de aplicación de ley de Hess.
Problema 5. La oxidación del azufre a trióxido de azufre es el proceso central en la producción industrial del ácido sulfúrico y también en la formación de la lluvia ácida: S(s) + 3/2 O2(g) = SO3(g) DH = ? (La fórmula correcta del azufre es S8 y sólo para simplificar la ecuaciones se escribirá el azufre como S). El proceso de oxidación ocurre en dos etapas cuyas reacciones son: UdeC/FCQ/P.Reyes Unidad 6

68 1) S(s) + O2(g) = SO2(g) DH1) = -296,8 kJ
Reacción: 1) S(s) + O2(g) = SO2(g) DH1) = -296,8 kJ 2) SO2(g) + 1/2O2(g) = SO3(g) DH2) = -198,4 kJ ¿Cómo calcular el valor de DH para la reacción: 3) S(s) + 3/2 O2(g) = SO3(g) DH3) = ? Solución. La reacción 3) = reacción 1) + reacción 2) por lo tanto: DH 3) = DH1) + DH2) DH3) = -296,8 kJ ,4 kJ DH3) = - 495,2 kJ UdeC/FCQ/P.Reyes Unidad 6

69 CO(g) + NO(g) = CO2(g) + 1/2N2(g).
Problema 6. Dos gases contaminantes que se producen en la combustión de gasolinas son CO(g) y NO(g). La contaminación sería menor si estos gases reaccionaran entre sí según la reacción: CO(g) + NO(g) = CO2(g) + 1/2N2(g). Calcule el valor de DH de esta reacción a partir de las reacciones termoquímicas siguientes: CO(g) + ½ O2(g) = CO2(g) DH = -283,0 kJ N2(g) + O2(g) = 2 NO(g) DH = 180,6 kJ UdeC/FCQ/P.Reyes Unidad 6

70 Sean las reacciones (R):
1) CO(g) + NO(g) = CO2(g) + 1/2N2(g) DH1) = ? 2) CO(g) + ½ O2(g) = CO2(g) DH2) = -283,0 kJ N2(g) + O2(g) = 2 NO(g) DH3) = 180,6 kJ La R 1) se puede obtener sumando la R 2) con la inversa de (1/2) x R 3), esto es: CO(g) + ½ O2(g) = CO2(g) DH2) = -283,0 kJ NO(g) = ½ N2(g) + ½ O2(g) -1/2 DH3) = - 90,3 kJ CO(g) + NO(g) = CO2(g) + 1/2N2(g) DH1) = -373,3 kJ UdeC/FCQ/P.Reyes Unidad 6

71 A partir de las reacciones:
Problema 7. A partir de las reacciones: N2O5(s) = 2 NO(g) + 3/2 O2(g) DH = 223,7 kJ NO(g) + ½ O2(g) = NO2(g) DH = -57,1 kJ calcule el valor de DH para la reacción: 2NO2(g) + ½ O2(g) = N2O5(s) Resp: ,5 kJ UdeC/FCQ/P.Reyes Unidad 6

72 Determinación de DH°298 de reacción usando DH°formación 298 .
Aplicando la ley de Hess es posible calcular el DH°298 de reacción a partir de los valores de los DH°formación 298 de las sustancias que intervienen en la reacción. UdeC/FCQ/P.Reyes Unidad 6

73 CH3OH(l) +3/2O2(g) = CO2(g) + 2 H2O(g) Datos:
Problema 8. Use valores de DH°f 298K para calcular el valor de DH° a 298 K para la reacción: CH3OH(l) +3/2O2(g) = CO2(g) + 2 H2O(g) Datos: sustancia DH°f 298K kJ/mol CH3OH(l) ,6 CO2(g) ,5 H2O(g) ,8 UdeC/FCQ/P.Reyes Unidad 6

74 Las reacciones de formación son:
1) C(graf) + 2H2(g) + ½ O2(g) = CH3OH(l) DHf, CH3OH(l) 2) C(graf) + O2(g) = CO2(g) DHf, CO2(g) 3) H2(g) + ½ O2(g) = H2O(g) DHf, H2O(g) Para obtener: CH3OH(l) +3/2O2(g) = CO2(g) + 2 H2O(g) DH = ? hay que sumar: R2) + 2 R3) – R1) por lo tanto: DH°298 = DHf, CO2(g) + 2 DHf, H2O(g) - DHf, CH3OH(l) DH°298 = - 393,5 + 2(- 241,8)-(- 238,6) = -638,5 kJ UdeC/FCQ/P.Reyes Unidad 6

75 En general para una reacción cualquiera: aA + bB = cC + dD DH°298 = ?
DH°298 = c DH°f,C + d DH°f,D – (a DH°f,A + b DH°f,B) S de n DH°f, de S de n DH°f, de los Productos los Reactantes UdeC/FCQ/P.Reyes Unidad 6

76 ¿Cómo se denomina este DH? Datos: DH°f, de H2O(l) =-285,8 kJ
Problema 9. A partir de valores de DH°f, calcule DH°298 para el cambio: H2O(l) = H2O(g). ¿Cómo se denomina este DH? Datos: DH°f, de H2O(l) =-285,8 kJ DH°f, de H2O(g) =- 241,8 kJ UdeC/FCQ/P.Reyes Unidad 6

77 DH = DH°f, de H2O(g) - DH°f, de H2O(l) DH = - 241,8 kJ – (-285,8 kJ)
Solución. H2O(l) = H2O(g). DH = DH°f, de H2O(g) - DH°f, de H2O(l) DH = - 241,8 kJ – (-285,8 kJ) DH = 44,0 kJ Este es DH de vaporización. UdeC/FCQ/P.Reyes Unidad 6

78 A partir de valores de DH°f a 25°C, calcule DH°298 para la reacción:
Problema 10. A partir de valores de DH°f a 25°C, calcule DH°298 para la reacción: 2 NH3(g) + 5/2 O2(g) = 2 NO(g) H2O(l) UdeC/FCQ/P.Reyes Unidad 6

79 2 NH3(g) + 5/2 O2(g) = 2 NO(g) + 3 H2O(l)
Datos: DH°f, 298 (kJ/mol) H2O(l) -285,83 NH3(g) - 45,94 NO(g) ,25 2 NH3(g) + 5/2 O2(g) = 2 NO(g) H2O(l) DHreac = 2 DH°f, NO(g) + 3 DH°f, H2O(l) - 2 DH°f, NH3(g) DHreac =2 x 90, x (-285,83) – 2 x (- 45,94) DHreac = - 585,11 kJ UdeC/FCQ/P.Reyes Unidad 6


Descargar ppt "Universidad de Concepción Facultad de Ciencias Químicas"

Presentaciones similares


Anuncios Google