La descarga está en progreso. Por favor, espere

La descarga está en progreso. Por favor, espere

MEDIDAS DE DISPERSION Lic. Oscar Noé López Cordón.

Presentaciones similares


Presentación del tema: "MEDIDAS DE DISPERSION Lic. Oscar Noé López Cordón."— Transcripción de la presentación:

1 MEDIDAS DE DISPERSION Lic. Oscar Noé López Cordón

2 Definición Es el grado en el que los valores se sitúan alrededor de una medida de tendencia central. Es importante mencionar que: Concentración y dispersión son dos aspectos del mismo fenómeno.

3 A B C X1 = 15 X2 = 15 X3 = 15 X1 = No Hay dispersión. Representa mejor la X X2 = Hay dispersión X3 = Hay dispersión. Tiene mayor dispersión A MAYOR DISPERSIÓN MENOR CONFIABILIDAD DE LA MEDIDA DE TENDENCIA CENTRAL". Ejemplo Numérico

4 Tipos de Medidas de Dispersión: ABSOLUTAS: Son las que están expresadas en la misma unidad de medida de la variable. Se estudiarán: 1.) Rango o Recorrido de Variación 2.) Desviación Media 3.) Varianza 4.) Desviación Estándar RELATIVAS: Son las que están expresadas en porcentajes. Se estudiará únicamente: El Coeficiente de Variación.

5 RECORRIDO, RANGO, OSCILACIÓN O CAMPO DE VARIACIÓN: (Símbolo R) Es igual al valor máximo menos el valor mínimo mas uno. También se dice que es desde donde empiezan los datos hasta donde terminan. R = Valor Máximo - Valor Mínimo + 1 Del Ejemplo numérico anterior: A = ( ) + 1 = 1 Menor Dispersión B = ( ) + 1 = 9 C = ( ) + 1 = 43 Mayor Dispersión. PARA DATOS AGRUPADOS: Valor Máx (76) (-) Valor Mín (35) más (+) uno (1) = 42 "DEBIDO A QUE EL RECORRIDO NO TOMA EN CUENTA A TODOS LOS VALORES, SI NO SOLO LOS EXTREMOS DEBEN USARSE OTRAS MEDIDAS.

6 DESVIACIÓN ABSOLUTA MEDIA O DESVIACIÓN MEDIA (Símbolo DM) Es la media aritmética de las diferencias tomadas en su valor absoluto de cada uno de los valores con respecto a su media aritmética. Propiedades: Cuando es una distribución normal, es simétrica o forma una Campana de Gauss X ± DM = Agrupa aproximadamente el 58% de los casos. Fórmulas: a. Datos sin agrupar: DM = / x - X / N b. Datos Agrupados: DM = ƒ / x - X / N Donde: / / = Valor absoluto de las desviaciones de la variable con respecto a la Media o bien no tomar en cuenta el signo.

7 Ejemplo Serie Simple: B x - X 132( ) 205( ) 123( ) X = 45 = 15 3 DM = / x - X / = 10 = 3.33 N 3 C x - X DM = 56 = 18.67Tiene Mayor Dispersión 3

8 CALCULO DE LA DM, Serie Agrupada en Clases DM = ƒ / x - X / = = 7.34 Miles Q. N 46 INTERPRETACION: Los valores (ISR Pagado) se desvían de su media aritmética en 7.34 como promedio considerando las diferencias en valores absolutos. Clasesfxfx/x-X/f/x-X/ xxxxxxxxxN = 46xxxx

9 VARIANZA O VARIANCIA: (S²) Es una medida estadística que mide el grado de dispersión y se define como la media aritmética de las desviaciones o diferencias cuadráticas de los valores con su respeto a su media aritmética. Fórmulas: Datos sin Agrupar S² = ( x - X ) ² N Ejemplo Serie Simple: B ( x - X ) ( x - X ) ² C ( x - X ) ( x - X ) ² S² = 38 = 12.67S² = 1176 = 392 3

10 Datos Agrupados S² = ƒ ( x - X ) ² N CALCULO DE VARIANZA: S² = ƒ ( x - X ) ² = = N 46 INTERPRETACIÓN: El ISR pagado promedio de las diferencias cuadráticas de los valores respecto a la media aritmética es igual a miles de quetzales al cuadrado. Clasesfxfx(x – X) (x – X) ² f(x – X) ² xxxxxxxxxN = 46xxxx 2523 xxxx

11 DESVIACIÓN ESTÁNDAR Ó TÍPICA: (S) Es la raíz cuadrada de la varianza. a. Datos sin Agrupar: S = ( x - X ) ² N b. Datos Agrupados: S = ƒ ( x - X ) ² N O bien = S = S ² CALCULO DE LA =DESVIACION ESTANDARD O DESVIACION TIPICA: Usamos el cálculo de la Varianza S = = = INTERPRETACIÓN: El el valor del ISR pagado de los contribuyentes se desvía de su Media Aritmética en Q 9.46 Miles como promedio.

12 Características de la Desviación Estándar: 1.) Es siempre mayor o igual a cero. 2.) Cuando la distribución es normal, es decir que se forma la campana de GAUSS, entonces: X ± S =Agrupa aprox. al 68.26% de los casos. X ± 2S=Agrupa aprox. al 95.46% de los casos. X ± 3S=Agrupa aprox. al 99.72% de los casos. 3.) El Recorrido de la distribución es igual a 6 desviaciones estándar: Recorrido= 6S 4.) Cuando a cada valor de los datos originales se le aumenta o disminuye un valor constante la "S" no cambia. 5.) Cuando a cada valor de los datos originales se multiplica por un valor constante la "S" cambia quedando multiplicada por la constante.

13 La Desviación Típica y la Desviación Media en una Distribución Normal: Para distribuciones en forma de campana, la DM es aproximadamente el 80% de la "S" ( %) en el caso de la curva normal. PREGUNTAS: 1.) Encontrar el intervalo o los valores que están comprendidos el 68.26% central del ISR pagado por las empresas: X ± S Agrupa aproximadamente al 68.26% de los casos = =64.31 RESPUESTA: El 68.26% central del ISR pagado por las empresas está comprendido entre Q y Q )Al analizar una distribución de frecuencias sobre el ISR pagado por las empresas se encontró que el 68.26% de los casos está comprendido entre Q y Q Encontrar el promedio del ISR pagado: =54.85 R/ 2

14 3.)Conociendo el ISR promedio (X = 54.85) y que el ISR Límite inferior Li = del intervalo donde aproximadamente se encuentra el 68.26% de los datos. Encontrar la Desviación Estandar del ISR pagado por las empresas. X +- S = 68.26% Datos: X = y Li = S = = S S = )La información estadística es la siguiente: S = Q 9.46 y límite superior del intervalo donde aproximadamente se encuentra el 68.26% de los casos. Calcular la Media Aritmética (X): X +, - S = 68.26% Ls = S = 9.46 X = X = = X = 54.85

15 5.)Cual es la desviación promedio del ISR pagado. DM = )Encontrar la medida estadística que sumándole o restándole la X en una distribución normal queda aproximadamente el 58% de los casos. RESPUESTA: D.M. 7.) Encontrar los limites del intervalo en los cuales está agrupado aproximadamente el 58% del ISR pagado por las empresas. X +- D.M. = 58% = Li = Ls

16 DISPERSION RELATIVA EL COEFICIENTE DE VARIACIÓN (CV): Es una medida de dispersión relativa que representa en % las distancias entre la X y los valores de la variable. Es el % de dispersión de los valores con respecto a su X. El CV mide la dispersión en términos relativos, si el resultado se multiplica * 100 se expresa en %. Es útil para comparar la dispersión de grupos distintos. Sirve para comparar distancias de frecuencias que tiene diferentes unidades de medida. Fórmula: C.V. = S * 100 X

17 Ejemplo #1: Una empresa tiene X de ventas mensuales de Q y S = 50 Otra empresa tiene X de ventas mensuales de Q y S = 50 Cual de las 2 empresas tiene menor dispersión relativa? A = C.V. = S * 100 = 50 * 100 = 25%. X 200 B = C.V. = S * 100 = 50 * 100 = 10% X 500 Respuesta: La empresa B"

18 Ejemplo #2: Un fabricante de bombillas tiene 2 tipos de bombillas: Bombilla A Bombilla B Xa = 1,495 horas Xb = 1,875 horas S = 280 horas S = 310 horas 1. Cuál de los dos tipos de bombilla tiene la mayor dispersión absoluta? La A 2. Cual de los dos tipos de bombilla tiene la mayor dispersión relativa. CVa = 280 * 100 = 18.73% CVb = 310 * 100 = 16.63% Respuesta: La A = y de comprar se compraría la B. CALCULAR EL COEFICIENTE DE VARIACIÓN DE LA DIST. CV = 9.46 x 100 = 17.24% 54.85

19 ASIMETRIA O SESGO Lic. Oscar Noé López Cordón

20 DEFINICION Muestra la dirección de los datos, ya sea asimetría negativa, positiva ó bien Simétrica. Cuando una distribución no es simétrica alrededor del valor de la Media (X), se dice que es Asimétrica. Si la distribución de frecuencias tiene una larga cola a la derecha de su concentración (Moda = Mo) se dice que es Asimétrica Positiva. Por el contrario si la cola esta ubicada a la izquierda del punto de concentración, decimos que es Asimétrica Negativa. Para determinar la clase de asimetría que tiene una distribución, existen varios coeficientes. Utilizaremos el Coeficiente de Sesgo o Coeficiente de Asimetría (b1). Existen tres formas de calcular dicho Sesgo o Asimetría. Si el resultado es cero (0) la distribución es Simétrica y luego dependiendo del signo puede ser: Asimetría Positiva o Negativa.

21 FORMULAS: PRIMER COEFICIENTE DE PEARSON: b1 = X - Mo S SEGUNDO COEFICIENTE DE PEARSON: b1 = 3 (X - Md) S TERCER COEFICIENTE EN BASE AL MOMENTO CENTRAL DE TERCER ORDEN: b1 = M³ S³ Donde: M³ = ƒ( x - X )³ N

22 Momentos: El primer Momento El primer momento es igual a cero (0). Recordar propiedad de la Media (X ): (x - X ) = 0 ƒ( x - X ) = 0 N El segundo Momento Es igual a la Varianza (M² = S²) S² = ƒ (x - X) ² N

23 CALCULO DE LOS COEFICIENTES DE ASIMETRIA DATOS: X =54.85 Mo = Md =55.07 S = 9.46 Primer Coeficiente de Pearson: b1 = X – Mo b1 = = S 9.46 b1 = ( -) => b1 < 0 La Distribución es Asimétrica Negativa. Segundo Coeficiente de Pearson: b1 = 3( X - Md ) b1 = 3( ) = S 9.46 IGUAL AL COEFICIENTE ANTERIOR

24 Momento General de Tercer Orden: b1 = M³ = S³ ƒ(x-X)³ O bien: b1 = ___N_____ = 46 = = S³ (9.46) ³ INTERPRETACION: Por ser el Coeficiente de Asimetría mayor que cero la distribución tiene Asimetría positiva Clasesfxfx(x – X) (x – X) ³ f(x – X) ³ xxxxxxxxxN = 46xxxx 2523 xxxx487.51

25 MEDIDAS DE APUNTAMIENTO O KURTOSIS Lic. Oscar Noé López Cordón

26 CURTOSIS O KURTOSIS (b2) Si la representación gráfica de una distribución de frecuencias es una curva achatada se dice dice que es una Curva Platicurtica, si por el contrario la curva es picuda será de forma Leptocurtica y si la curva es normal su forma será Mesocurtica. Para determinar la forma de la curva se usa el Coeficiente de Kurtosis (b2) el cual toma como representación el número tres. Así tenemos: b2 menor que tres = Platicurtica b2 mayor que tres = Leptocurtica b2 igual a tres =Mesocurtica

27 COEFICIENTE DE KURTOSIS CON BASE EN EL MOMENTO DE ORDEN CUATRO: b2 = M4 S4 M4 = ƒ(x-X)4 =.... N S4 CALCULO DEL COEFICIENTE DE KURTOSIS: Clasesfxfx(x – X)(x – X) 4f(x – X) xxxxxxxxxN = 46xxxx 2523 xxxx

28 M4 = ƒ(x-X)4 = = 20, = 2.53 N S4 (9.46)4 POR SER EL COEFICIENTE DE KURTOSIS 2.53 MENOR QUE 3 LA CURVA ES DE FORMA ACHATADA O PLATICURTICA.


Descargar ppt "MEDIDAS DE DISPERSION Lic. Oscar Noé López Cordón."

Presentaciones similares


Anuncios Google