La descarga está en progreso. Por favor, espere

La descarga está en progreso. Por favor, espere

NOCIONES BASICAS DE PROBABILIDAD 1. Aplicar los conceptos de los términos: Experimento, espacio muestral y evento. 2. Conocer y aplicar la definición.

Presentaciones similares


Presentación del tema: "NOCIONES BASICAS DE PROBABILIDAD 1. Aplicar los conceptos de los términos: Experimento, espacio muestral y evento. 2. Conocer y aplicar la definición."— Transcripción de la presentación:

1

2 NOCIONES BASICAS DE PROBABILIDAD

3 1. Aplicar los conceptos de los términos: Experimento, espacio muestral y evento. 2. Conocer y aplicar la definición y propiedades de la probabilidad de ocurrencia de un evento. 3. Aplicaciones del cálculo de probabilidades en la ocurrencia de eventos biomédicos. OBJETIVOS

4 Definición de términos EXPERIMENTO ALEATORIO: Es aquel fenómeno que bajo las mismas condiciones experimentales se obtienen dos o más posibles resultados diferentes Ejemplos: 1 : Evaluar el estado de salud de una persona elegida al azar de una población: s (sano) ó e (enfermo) 2: Evaluar el estado de salud de tres personas elegidas al azar de una población:(sss) ó (sse) ó (ses) ó (ess) ó (see) ó (ese) ó (ees) ó (eee)

5 ESPACIO MUESTRAL ASOCIADO A UN EXP. ALEATORIO: ESPACIO MUESTRAL ASOCIADO A UN EXP. ALEATORIO: ES EL CONJUNTO DE TODOS LOS POSIBLES RESULTADOS DE UN EXPERIMENTO ALEATORIO Ejemplos: 1 = {s, e} 2 = {(sss), (sse), (ses), (ess), (see), (ese), (ees), (eee)}

6 EVENTO ó SUCESO : denotado por: A, B,.. ES UN SUBCONJUNTO DEL ESPACIO MUESTRAL Ejemplo.- : Evaluar el estado de salud de tres personas elegidas al azar de una población. Un espacio muestral asociado a este experimento es: : {(sss), (sse), (ses), (ess), (see), (ese), (ees), (eee)} Definamos los siguientes eventos: A: Que una persona resulte enferma A={(sse),(ses),(ess)}; n(A)= 3 B: Que al menos dos personas resulten enfermas B={(see),(ese),(ees),(eee) ; n(B)= 4 C: Que la segunda persona resulte enferma C={ (ses); (see); (ees); (eee)}; n(C)= 4

7 … … … … …. D: Que al menos 4 personas resulten enfermas D={ } = ; n(D) = 0 (EVENTO IMPOSIBLE) B: Ocurra a lo más un enfermo (COMPLEMENTO DEL _ EVENTO B) _ B={(e,s,s),(s,e,s),(s,s,e),(s,s,s) ; n(B) = 4 E: A lo más 3 personas resulten enfermas E={(sss);(sse);(ses);(ess);(see);(ese);ees);eee)}= n(E) = n( ) = 8 (EVENTO SEGURO) F: Que las 3 personas resulten sanas F={(s,s,s)}; n(F)=1 (EVENTO ELEMENTAL)

8 En base a los eventos ya definidos, podemos construir otros eventos, por ejemplo: AUC={(s,s,e);(s,e,s,);(e,s,s);(s,e,e);(e,e,s);(e,e,e)} Ocurre el evento AUB si ocurre A ó B ó ambos. A C={(s,e,s)} Ocurre el evento A C si ocurre A y C Ocurre el complemento del evento B (B) si no ocurre B. Los eventos B y B son COMPLEMENTARIOS si: BUB = y B B = { } = También se podrían generar los siguientes eventos: A-B: Que ocurra solamente el evento A B-A: Que ocurra solamente el evento B A B: Que ocurra solamente uno de los dos evento.

9 PROBABILIDAD DE LA OCURRENCIA DE UN EVENTO : P(A) = n(A) / n( ) A: Que ocurra exactamente una persona enferma. A={(sse),(ses),(ess)}; n(A) = 3 B: Que ocurra al menos dos personas enfermas. B={(see),(ese),(ees), (eee)}; n(B) = 4 C: Ocurra al menos 4 personas enfermas. _ C={ } = ; n(C) = 0 (IMPOSIBLE) B:_ Ocurra a lo más un enfermo _ B={(sse),(ses),(ess),(sss)}, n(B) = 4 E: Ocurra a lo más 3 personas enfermas E={(sss),(sse),(ses),(ess), (see), (ese),(ees),(eee)} = n(E) = n( ) = 8 (SEGURO) F: Ocurra exactamente 3 personas sanas F={(sss)} ; n(F) = 1 (ELEMENTAL) EJEMPLOS: P(A) = n(A)/n( ) = 3/8 = P(B) = n(B)/ n( ) = 4/8 = 0.5 P(C) = n(C)/n( ) = 0/8 = 0 _ _ P(B) = n(B)/n( ) = 4/8 = 0.5 P(E) = n(E)/n( ) = 8/8 = 1 P(F) = n(F)/n( ) = 1/8 = 0.125

10 P R O P I E D A D E S P(A) 1 P(A) = n(A)/n( ) = 3/8 = P(B) = n(B)/ n( ) = 4/8 = 0.5 P(D) = n(D)/n( ) = 4/8 = 0.5 P(F) = n(F)/n( ) = 1/8 = P(C) = n(C)/n( ) = 0/8 = 0 (Probabilidad de Evento Imposible) P(E) = n(E)/n( ) = 8/8 = 1 (Prob. Evento Seguro ) A

11 2.- Si A,B eventos cualesquiera, entonces, P(AUB) = P(A) + P(B) - P(A B) (A B) B A

12 EJEMPLO.- En una comunidad, se evaluó el estado de nutrición de 100 niños menores de 5 años de edad, obteniéndose los siguientes resultados: ********************************************************* SEXO ESTADO de NUTRICION Normal Malnutrido TOTAL ********************************************************* Hombres Mujeres ******************************************************** TOTAL ******************************************************** Se elige un niño al azar, cuál es la probabilidad de que sea hombre o su estado de nutrición sea normal ? SOLUCION H: Sea hombre N: Tenga estado nutricional normal P(HUN) = P(H) + P(N) - P(H N) P(HUN) = 55/ / /100 = 0.75

13 3. Si A,B eventos excluyentes (A B= ), entonces, P(AUB) = P(A) + P(B) AB

14 EJEMPLO.- Se recolectó información sobre el peso del recién nacido y si la madre fumó o no durante el embarazo. Los datos se presentan a continuación: FUMA CIGARRILLOSPESO R N. TOTAL BAJONORMAL SI NO TOTAL ¿Cuál es la probabilidad de que un recién nacido tenga bajo peso o sea normal? SOLUCION B : Tenga bajo peso al nacer N : Tenga peso normal P( B N ) = P( B ) + P( N ) P( B N ) = 50 / / 200 = 1

15 _ 4.- Si A y A son complementarios, entonces, _ _ P( A) = 1 - P(A) ó P(A) = 1 - P( A) _A_A A

16 EJEMPLO.- En una determinada comunidad, se evaluó el estado nutricional de 100 niños menores de 5 años de edad, obteniéndose los siguientes resultados: ************************************ Estado Nutricional nº ************************************ Normal 60 Malnutrido 40 ************************************ TOTAL 100 ************************************ Se elige un niño al azar de esta población, cuál es la probabilidad de que sea malnutrido? SOLUCION N : Estado nutricional sea normal _ N : Estado nutricional sea malnutrido _ luego, P( N) = 1 - P( N) _ P( N) = /100 = 0.4 Interpretación : Por tanto, la probabilidad de que el niño elegido al azar de dicha comunidad este malnutrido es de 0.4.

17 5.- Si A,B eventos cualesquiera, entonces, _ P( A B) = P( A-B) = P(A) - P(A B) NOTA: Las probabilidades son expresadas en tanto por uno. (A B) B A __ (A B)

18 EJEMPLO.- Retomando el ejemplo sobre el peso del recién nacido y si la madre fumó o no durante el embarazo, Cuál es la probabilidad de que el RN tenga bajo peso pero la madre no fuma? SOLUCION B : Tenga bajo peso al nacer _ F : La madre no fuma _ P( B F) = P( B ) - P( B F ) _ P( B F ) = 50 / / 200 = 20/200 _ P( B F ) = 0.10

19 EJEMPLO.- Se clasifica a 900 adultos que han culminado sus estudios superiores según sexo y ocupación, y se obtienen los siguientes resultados: *************************************************************** SEXO OCUPACION _ Desempleados (D) Empleados (D) TOTAL *************************************************************** Hombres (H) Mujeres (H) **************************************************************** TOTAL ***************************************************************** Se elige un adulto al azar, cuál es la probabilidad de que: a. esté desempleado b. Esté desempleado y es hombre c. Esté empleado o mujer SOLUCION a. P(D) = n(D) / n( ) = 300/900 = 0.33 b. P(D H) = n (D H) / n( ) = 40/900 = 0.04 _ _ _ _ _ _ c. P(D U H) = P(D) +P(H) - P(D H) = 600/ / /900 = 0.956

20 Resolver ejercicio 1 En la población de niños menores de 5 años de la comunidad Robledo, un médico está interesado en estudiar como se comporta la desnutrición y la anemia. Se tiene conocimiento de que la probabilidad de que un niño tenga al menos una de las dos enfermedades es de La probabilidad de que solamente esté desnutrido es de La probabilidad de que un niño menor de 5 años esté desnutrido es de 0.4. Si de esta población seleccionamos un niño al azar, ¿Cuál es la probabilidad de que: a. El niño este desnutrido y tenga anemia. b. Solamente tenga anemia. c. Solamente tenga anemia o solamente tenga desnutrición?

21 PROBABILIDAD CONDICIONAL: P (A/B) Sea un espacio muestral asociado al experimento aleatorio E. Sean los eventos A y B dados en con P(A) y P(B) >0. La probabilidad de la ocurrencia del evento A dado que ha ocurrido B: P (A/B), también se denomina probabilidad condicional de A dado B. Se define como: n(A B) P(A/B) = ( se aplica cuando los datos están en una tabla) n(B) P(A B) P (A/B) = ( se aplica cuando los datos no están en una tabla) P( B) donde P(B) > 0

22 Ejemplo: *************************************************************** SEXO OCUPACION Desempleados Empleados TOTAL D D *************************************************************** Hombres H Mujeres H **************************************************************** TOTAL ***************************************************************** Se elige un adulto al azar, cuál es la probabilidad de que: a. Esté desempleado b. Esté desempleado dado que es mujer c. Esté desempleado dado que es varón SOLUCION: n(D H) 260 b. P (D/M) = = = 0.65 n(H) 400 Interpretación: Al elegir un adulto al azar, la probabilidad de que este desempleado dado que es mujer es de 0.65.

23 EJEMPLO: Se dispone de 110 historias clínicas, pertenecientes a pacientes masculinos y femeninos agrupados por su nivel de hemoglobina. MF Estado(Masculino)(Femenino)Total A (Anémico) N (Normal) Total Dado que la historia clínica corresponde a un paciente anémico, ¿cuál es la probabilidad que sea mujer? SOLUCION n(F A) 30 P(F/A) = = = n(A) 80 Sexo

24 PROPIEDADES (Probabilidad condicional) Si P(H) 0, entonces : _ 1.- P (D/H) = 1 - P( D/H) 2.- P( /H) = Si A, B son disjuntos en H, tenemos que: P[(AUC)/H] = P(A/H) + P(C/H)

25 EJEMPLO El 50% de la población aproximadamente son varones, el 68% bebe con cierto exceso, y el 38.5% bebe y es varón. Dado que una determinada persona aleatoriamente seleccionada es varón, hallar la probabilidad de que beba. Es el estatus de bebedor independiente del sexo? SOLUCION A: Sea varón P(A) = 0.5 B: bebe P(B) = 0.68 A B: Sea varón y bebe P(A B) = B/A: bebe dado que es varón P(B/A) = ? P(B/A)=(0.385)/(0.5) = 0.77 Nos indica que la probabilidad de que beba dado que es varón es de Además, como P(B/A) P(B), el estatus de bebedor no es independiente del sexo.

26 Independencia de eventos Sean los eventos A y B definidos en. Si P(A/B)=P(A), entonces A es independiente de B Si P(B/A)=P(B), entonces B es independiente de A. Los eventos A y B son independientes si y solo P( A B) = P (A) * P (B)

27 Ejercicio 1 En relación a los profesores de la facultad de medicina, se tiene conocimiento de que uno de ellos tenga solamente hipertensión o solamente diabetes es de Además se tiene conocimiento de que un profesor sea diabético dado que es hipertenso es de 0.25; y la probabilidad de que un profesor sea hipertenso es de Se pide: a. Si de los profesores de la facultad, seleccionamos uno al azar, ¿cuál es la probabilidad de que el profesor sea hipertenso si es diabético? b. En los profesores, la diabetes es independiente de la hipertensión arterial

28 Ejercicio 2 La probabilidad de que un adulto sea hipertenso es de Si de dicha población seleccionamos dos adultos al azar, ¿Cuál es la probabilidad de que: A. Al menos uno de ellos sea hipertenso? B. Exactamente uno de ellos sea hipertenso?


Descargar ppt "NOCIONES BASICAS DE PROBABILIDAD 1. Aplicar los conceptos de los términos: Experimento, espacio muestral y evento. 2. Conocer y aplicar la definición."

Presentaciones similares


Anuncios Google