La descarga está en progreso. Por favor, espere

La descarga está en progreso. Por favor, espere

CAPACITORES 1. Astone Oscar 2. Alvarez Luciana 3. Abate Sergio 4. Battelli Nicolás.

Presentaciones similares


Presentación del tema: "CAPACITORES 1. Astone Oscar 2. Alvarez Luciana 3. Abate Sergio 4. Battelli Nicolás."— Transcripción de la presentación:

1 CAPACITORES 1. Astone Oscar 2. Alvarez Luciana 3. Abate Sergio 4. Battelli Nicolás

2 Definición de un capacitor Conocidos también como condensadores son dispositivos electrónicos que permiten almacenar energía eléctrica. En un circuito pueden estar asociados en serie paralelo o mixto, tal como lo hacen las resistencias. Capacitor cilíndrico

3 Diseño de un capacitor Está formado por dos conductores, denominan placas, muy cercanos entre si. Entre ellas se coloca un dieléctrico que permite aislar las placas entre si. La figura muestra un esquema de un capacitor de placas paralelas, aislado, en este caso, por aire. Existen otros dieléctricos tales como vidrio, papel humedecido con parafina etc. d

4 Diseño de un capacitor, la botella de Leyden Es un condensador cilíndrico, tiene por armaduras hojas metálicas que envuelven el recipiente de vidrio (dieléctrico) por fuera y por dentro. Ocupa un volumen grande y tiene relativamente poca capacidad. Vidrio Hojas metálicas (llamado botella de Leyden, por la ciudad holandesa donde primero se construyó )

5 Diseño de un capacitor Se pueden construir condensadores de gran capacitancia y poco volumen usando como armaduras hojas metálicas, separadas por un dieléctrico (generalmente papel parafinado), y enrollado, tal como muestra la figura. Aluminio Dieléctrico

6 Simbología de un capacitor Tal como acontece con los componentes de un circuito, los capacitores poseen su propia representación. Esta es la que indica la figura siguiente.

7 Funcionamiento de un capacitor proceso de carga Se conecta el capacitor inicialmente descargado, a una batería o fuente de poder, una placa al polo negativo y la otra al positivo, respetando la polaridad del capacitor y la batería. (positivo con positivo y negativo con negativo). Generalmente el polo negativo del capacitor es más corto ( es usual que venga señalado en el cuerpo del capacitor) + _

8 Funcionamiento de un capacitor proceso de carga En esta situación la batería extrae electrones desde una placa, la que finalmente adquiere una carga + Q, y los deposita en la otra que gana una carga – Q. El capacitor queda entonces con carga Q. Para ello se hace referencia al módulo de la carga que adquiere una de las placas. +Q+Q -Q-Q La carga neta del capacitor es cero

9 Funcionamiento de un capacitor proceso de carga La transferencia de carga va aumentando hasta un límite en el cual la diferencia de potencial entre las placas del capacitor se iguala con la que posee la batería. Esta condición es la que limita el almacenamiento de energía (carga eléctrica) en el capacitor +Q+Q -Q-Q V (volt)

10 Funcionamiento de un capacitor proceso de carga Si se cambia la fuente de poder por otra que posea más voltaje entre sus polos, entonces el capacitor junto con acumular más energía en forma de carga eléctrica, aumenta su voltaje terminal, de tal modo que el cuociente Q/ V se mantiene constante. Este cuociente se denomina capacitancia y es característico de cada capacitor: Si Q se mide en coulomb y V en volt, entonces C se mide en Faradios (F) Una capacitancia igual a 1F = 1C/V es una unidad muy grande. Se acostumbra a usar submúltiplos como el microfaradio ( F) = F o picofaradio (pF) = F

11 Funcionamiento de un capacitor proceso de carga Se puede demostrar usando la ley de Gauss (contenido que escapa de los objetivos de este curso) que la capacitancia de un capacitor de placas paralelas es: 0 : permitividad del espacio libre entre las placas (aire o vacío). Esta constante se relaciona con la constante de Coulomb a través de 0 = 1/ 4 K y por tanto posee un valor igual a 8, C 2 /Nm 2 Área entre placas Separación entre placas

12 Funcionamiento de un capacitor proceso de carga Como la longitud L de las placas conductoras en comparación con la distancia d que las separa, es muchísimo mayor, dentro del capacitor se forma un campo electrostático uniforme. Bajo estas condiciones el campo Posee un valor que depende del Voltaje entre las placas y la Separación entre las mismas, es decir : E0E0

13 Funcionamiento de un capacitor, con dieléctrico Como se vio, la capacitancia de un capacitor depende del área de las placas y la separación entre ellas, pero también puede aumentarse si además entre las armaduras de él se coloca un dieléctrico o aislador. El dieléctrico se afecta por el campo eléctrico del capacitor, ocasionando que aquel se polarice, como indica la figura. EpEp Dieléctrico E0E0

14 Funcionamiento de un capacitor, con dieléctrico Esto provoca que en el dieléctrico se forme un campo E p en dirección opuesta al que genera el capacitor. Por consiguiente el campo neto es la suma de ambos: E T = E 0 -E p. En este proceso la carga Q acumulada en las placas no se afecta E T = E 0 -E P

15 Funcionamiento de un capacitor, con dieléctrico Recuerde que V 0 = E 0 d. Como la diferencia de potencial es función del campo dentro del capacitor y de la separación entre las placas se obtiene que, la nueva diferencia de potencial disminuye, esto es: V= E T d, porque el campo disminuye. Es decir que: V V 0. La nueva capacitancia es C = Q/ V 13V9V Sin dieléctricoCon dieléctrico C0C0 Q CQ

16 Funcionamiento de un capacitor, con dieléctrico Se demuestra que V = V 0 / k d donde k d 1. Luego la capacitancia puede expresarse como: C = K d Q / V 0 Es decir, C = k d C 0. A su vez esta ecuación puede escribirse en término del área de las placas y de la distabcia d entre ellas, tal como sigue: K d se conoce como la constante del dieléctrico

17 Funcionamiento de un capacitor, con dieléctrico Para variar la capacidad de un condensador, se pueden poner materiales con distintas constantes dieléctricas entre sus placas. La constante dieléctrica del vació es 1; la de un conductor perfecto sería infinita. Otra utilidad de los dieléctricos, y especialmente los sólidos, es que permiten colocar las placas muy cerca sin peligro de que se toquen y se descarguen, lo cual permite aumentar aún más la capacitancia del condensador.

18 Energía en un capacitor Cuando un condensador se descarga, se produce un flujo de cargas desde la placa negativa a la positiva hasta que se igualen las cargas y desaparezca la diferencia de potencial. El transporte de esas cargas, implica un trabajo eléctrico y por tanto la transformación de energía eléctrica. La expresión general para la energía almacenada en un capacitor es: Q : carga acumulada, C: capacitancia, V: diferencia de potencial entre las placas De acuerdo a los datos Puede expresarse también así

19 Constante dieléctricas de algunos materiales

20 Ejemplo 1.- Se conecta un capacitor a una batería de 300V. Suponga que la carga transferida a las placas del capacitor es 1, C. Determine la capacitancia cuando el dieléctrico usado es aire. Resp. Aplicando C = Q/ V C = F = 4 F Habitualmente V se escribe como V y vice-versa

21 Ejemplo 2.- Suponga que se mantiene el capacitor conectado a la batería de la pregunta anterior. Se separan las placas una distancia el doble de la inicial. ¿ Cuál será el valor del voltaje entre las placas del capacitor? Resp. No cambia pues las placas siguen conectadas a la misma diferencia de potencial de la batería. Esto e independiente de la separación de las placas.

22 Ejemplo 3.- Con las condiciones del problema anterior determine la capacitancia. Resp. C =

23 Ejemplo 4.-Para el mismo problema anterior determine la carga entre las placas. Resp. Aplicando Q = C V Q = ( F) 300 (V) Q = C Obs. A pesar que el voltaje en el capacitor se mantuvo, la carga acumulada disminuye debido que la capacitancia del mismo disminuyó a la mitad producto de la nueva separación entre las placas del mismo

24 Ejemplo 5.- Determinar el área de las placas de un capacitor de placas paralelas de 1 F, sabiendo que ellas estás separadas 1 mm. 0 = 8, C 2 / Nm 2 d = m C = 1 F Esto corresponde a un cuadrado de 10 Km por lado. Por eso los capacitores de uso común son del orden del picofaradio ( F)

25 Ejemplo 7.- Un condensador plano cargado pero desconectado de la batería tiene una capacidad de 9 F y entre sus armaduras hay una diferncia de potencial de 200 V. ¿ Qué energía se liberará en la descarga del capacitor? Resp. U c = Q V/2 Q = C V = 1, C U C = 0,18 j

26 Ejemplo 8.- Respecto del problema anterior. Determinar la energía que se almacenará en el capacitor cuando la distancia entre las placas se triplique: Resp. La carga no sufre alteración de modo de Q = 1, C. Como la capacitancia del condensador es inversamente proporcional a la distancia entre las placas C= C 0 /3= F. Además V= Q/C = 600V. Por lo tanto la nueva energía U C = 0,54 j

27 Ejemplo 9.- Con relación al problema anterior, ¿cuál es el trabajo realizado para separa las placas del condensador? Resp. El trabajo realizado se transfirió al capacitor por ello aumentó su energía. De acuerdo con el principio de conservación de la energía: W = E= U c - U 0c = 0,54-0,18=0,36J

28 Tipos de capacitores Existen diversos condensadores, algunos denominados polarizados, variables, pasante electrolítico, ajustable etc. En esta unidad se ha centrado el estudio en los Condensadores no polarizados. Cada tipo posee su propia simbología.

29 Simbología para diversos capacitores

30 Algunas equivalencias La carga acumulada se mide en Coulomb (C) y el potencial en volt (V). Luego la unidad de medida en el sistema S.I. para la capacitancia es el : C/V. Que se denomina Farad o Faradio (F). Por ser una unidad más bien grande se utiliza otras submúltiplos como : Nano faradio: nF = F Micro faradio: F = F Pico faradio: pF = F Mili faradio: mF = F


Descargar ppt "CAPACITORES 1. Astone Oscar 2. Alvarez Luciana 3. Abate Sergio 4. Battelli Nicolás."

Presentaciones similares


Anuncios Google