La descarga está en progreso. Por favor, espere

La descarga está en progreso. Por favor, espere

Conceptos básicos. Probabilidad A la Estadística Descriptiva le concierne el resumen de datos recogidos de eventos pasados. A la Estadística Inferencial.

Presentaciones similares


Presentación del tema: "Conceptos básicos. Probabilidad A la Estadística Descriptiva le concierne el resumen de datos recogidos de eventos pasados. A la Estadística Inferencial."— Transcripción de la presentación:

1 Conceptos básicos

2 Probabilidad A la Estadística Descriptiva le concierne el resumen de datos recogidos de eventos pasados. A la Estadística Inferencial le concierne el cálculo de la probabilidad de que algo ocurra en el futuro. En muchas situaciones, la toma de decisiones se efectúa en condiciones de incertidumbre. La teoría de la probabilidad resulta muy útil en estos casos.

3 Enfoques de la probabilidad Clásico. Los resultados de un experimento son igualmente posibles. Empírico ó de frecuencia relativa. Se basa en el número de veces que ocurre el evento.

4 Subjetivo. Se basa en la probabilidad que le asignen a determinado evento, personas con experiencia en el campo y que tengan más información.

5 Distribuciones de Probabilidad Una distribución de probabilidad es un listado de todos los resultados de un experimento y la probabilidad asociada con cada resultado. Por ejemplo, si se lanza al aire una moneda. Evento E(x)Probabilidad P(x) Aguila0.5 Sello0.5 Total1

6 Algunos conceptos Variable aleatoria. Cantidad que resulta de un experimento que, por azar, puede adoptar diferentes valores. Por ejemplo, si se cuenta el número de alumnos que no vinieron hoy a clase, puede tomar valores de 0, 1, 2,... El número de ausencias es una variable aleatoria. Variable aleatoria discreta. Adopta solamente valores claramente separados (el ejemplo de la moneda).

7 Variable aleatoria continua. Resulta de un proceso de medición, por lo que no conoceremos el resultado exactamente. Las variables aleatorias discretas y continuas, al organizar sus posibles valores, forman las distribuciones de probabilidad discretas y continuas, respectivamente.

8 Distribuciones de probabilidad discretas Distribuciones de probabilidad continuas El número de águilas en tres lanzamientos de una moneda. El peso de cada estudiante de la clase. El número de estudiantes que obtuvieron 100 en el examen pasado. La temperatura ambiente en esta aula. El número de obreros que se ausentaron hoy en el segundo turno. La duración de cada canción en el último álbum de Tim McGraw. El número de comerciales de 30 segundos que pasan en la NBC de 8 a 11 de la noche. Las medidas de Maribel Guardia. Algunos ejemplos de distribuciones discretas y continuas

9 Distribuciones de probabilidad discretas Binomial Características: 1. Los resultados pueden ser éxito ó fracaso. 2. La v.a. permite contar el número de éxitos en una cantidad fija de pruebas. 3. La probabilidad de éxito y fracaso es la misma para cada prueba. 4. Las pruebas son independientes, es decir, el resultado de una prueba no influye en el resultado de otra prueba.

10 Modelo matemático. El 5% de los engranajes de tornillo producidos en una fresadora automática de alta velocidad Carter-Bell se encuentra defectuoso. ¿Cuál es la probabilidad de que, en seis engranajes seleccionados al azar ninguno se encuentre defectuoso?¿Exactamente uno?¿Todos?

11 Hipergeométrica. Características 1. Los resultados pueden ser éxito ó fracaso. 2. La v.a. es el número de éxitos de un número fijo de pruebas. 3. Las pruebas no son independientes. 4. Los muestreos se realizan con una población finita sin reemplazo, por lo que la probabilidad de éxito cambia en cada prueba.

12 Modelo matemático Play Time Toys tiene 50 empleados en el área de ensamble. Cuarenta empleados pertenecen al sindicato y diez no. Se eligen al azar cinco empleados para formar un comité que hablará con la empresa sobre los horarios de inicio de los turnos.¿Cuál es la probabilidad de que cuatro de los cinco empleados pertenezcan al sindicato?

13 Poisson. Características 1. La v.a. es el número de veces que ocurre un evento durante un intervalo definido. 2. La probabilidad de que ocurra el evento es proporcional al tamaño del intervalo. 3. Los intervalos no se superponen y son independientes.

14 Modelo matemático Un promedio de dos automóviles ingresan por minuto a cierta autopista. La distribución de ingresos se aproxima a una distribución de Poisson. ¿Cuál es la probabilidad de que ningún automóvil ingrese en determinado minuto?

15 Distribuciones de Probabilidad Continuas Distribución normal. Características. 1. Tiene forma acampanada. 2. El área total bajo la curva es igual a La media, mediana y moda son iguales y están en el centro de la curva. 4. Las colas de la curva se extienden indefinidamente en ambas direcciones.

16 Modelo matemático

17 Estandarización de datos Un grupo de alumnos obtuvo 85 como promedio general en un examen con una desviación estándar de 6. Convertir las siguientes calificaciones a unidades estándar (a unidades z). A) 90 B) 70 C) 85

18 Cálculo de áreas bajo la curva normal De z = 0 a z = 1.23 De z = 0 a z = De z = a z = 3.11 De z = 0.46 a z = 1.83 De z = a z = A la derecha de z = A la izquierda de z = y a la derecha de z = 3.22

19 Aplicaciones Un grupo de 40 alumnos obtuvo 85 como promedio general en un examen con una desviación estándar de 6. ¿Cuántos alumnos aprobaron? De acuerdo a cifras del gobierno, el reembolso medio de impuestos en 2004 fue de $2,454. Suponga que la desviación estándar es de $650 y que las sumas devueltas tienen una distribución normal. a) ¿Qué porcentaje de reembolso son superiores a $3,000? b)¿Qué porcentaje son superiores a $2,500 e inferiores a $3,500?

20 Distribuciones muestrales En la práctica, cuando se investiga ya sea un nuevo producto, la proporción de votantes que se inclinará por un candidato, etc., no se toma un elemento de la población para su estudio y luego otro elemento, etc., sino se toma una muestra de determinado tamaño; por lo tanto, tendremos que trabajar con distribuciones muestrales.

21 Razones para muestrear Establecer contacto con toda la población requeriría mucho tiempo. El costo de estudiar todos los elementos sería prohibitivo. Es imposible verificar de manera física todos los elementos de la población. Algunas pruebas son de naturaleza destructiva. Los resultados de la muestra son adecuados.

22 Distribución muestral de la media Suponga que la tabla siguiente muestra la antigüedad en años en el trabajo de tres maestros del tecnológico. Suponga además que se seleccionan muestras aleatorias de tamaño 2 sin reemplazo. MaestroAntigüedad A6 B4 C2

23 a) ¿Cuál es la media de la población? b) ¿Cuál es la desviación estándar de la población? c) ¿Cuál es la distribución muestral de la media para muestras de tamaño 2? d) ¿Cuál es la media de la distribución muestral de la media?

24 Teorema del Límite Central Si todas las muestras de un tamaño particular se seleccionan de cualquier población, la distribución muestral de la media se aproxima a una distribución normal. Esta aproximación mejora con muestras más grandes. Si el tamaño de la muestra (n) es igual ó mayor a 30, podemos considerar que los datos proceden de una distribución normal.

25 La importancia del TLC es que nos permite usar estadísticas de la muestra para hacer inferencias sobre parámetros de la población, sin saber la forma de la distribución de frecuencia de esa población, más que lo que podamos obtener de la muestra.

26 Aplicación del TLC La distribución de los ingresos anuales de todos los cajeros de un banco con cinco años de experiencia está sesgada negativamente (hacer gráfica). Esta distribución tiene una media de $19,000 y una desviaciós estándar de $2,000. Si extraemos una m.a. de 30 cajeros, ¿Cuál es la probabilidad de que sus ganancias promedien más de $19,750?

27 Ejemplos de distribuciones muestrales de una media con desviación estándar poblacional conocida Una empresa eléctrica fabrica focos que tienen una duración que se distribuye aproximadamente en forma normal, con media de 800 horas y desviación estándar de 40 horas. Encuentre la probabilidad de que una muestra aleatoria de 16 focos tenga una vida promedio de menos de 775 horas.

28 Las estaturas de 1000 estudiantes están distribuidas aproximadamente en forma normal con una media de centímetros y una desviación estándar de 6.9 centímetros. Si se extraen 200 muestras aleatorias de tamaño 25 sin reemplazo de esta población, determine: El número de las medias muestrales que caen entre y centímetros. El número de medias muestrales que caen por debajo de 172 centímetros.

29 Distribución t de Student Desarrollada por William Gossett. Publicó su trabajo con el seudónimo de Student. La distribución t es más bien una familia de distribuciones cuya forma (y valores )dependen de los grados de libertad. Tiene forma acampanada y es simétrica. La distribución t es más densa en las colas y más baja en el centro que la distribución de z. Se utiliza cuando el tamaño de muestra es pequeño y se desconoce la varianza poblacional (es lo que ocurre más frecuentemente).

30

31 Ejemplos de distribuciones muestrales de una media con desviación estándar poblacional desconocida Suponga que un fabricante de alambre de acero afirma que la fuerza requerida para romper una clase de alambre dada es de 500 libras. Para probar ésto, se toma una muestra de 25 piezas de este tipo de alambre y se somete a tracción. La media y la desviación estándar resultan 465 libras y 55 libras, respectivamente. Suponiendo que los esfuerzos de rotura se pueden considerar como una muestra aleatoria tomada de una población normal con μ = 500 ¿Qué podemos decidir respecto a la afirmación del fabricante?


Descargar ppt "Conceptos básicos. Probabilidad A la Estadística Descriptiva le concierne el resumen de datos recogidos de eventos pasados. A la Estadística Inferencial."

Presentaciones similares


Anuncios Google