La descarga está en progreso. Por favor, espere

La descarga está en progreso. Por favor, espere

QUIMICA BIOLOGICA Lic. y Prof. en Ciencias Biológicas BOLILLA 3: -.Metabolismo. Principales nutrientes de autótrofos y heterótrofos. Catabolismo. Anabolismo.

Presentaciones similares


Presentación del tema: "QUIMICA BIOLOGICA Lic. y Prof. en Ciencias Biológicas BOLILLA 3: -.Metabolismo. Principales nutrientes de autótrofos y heterótrofos. Catabolismo. Anabolismo."— Transcripción de la presentación:

1 QUIMICA BIOLOGICA Lic. y Prof. en Ciencias Biológicas BOLILLA 3: -.Metabolismo. Principales nutrientes de autótrofos y heterótrofos. Catabolismo. Anabolismo. Metabolismo de Carbohidratos en los distintos organismos: Animales y Vegetales. Digestión y absorción. Sistema digestivo en individuos heterótrofos. Digestión en rumiantes. Estructuras especializadas. Distribución de glucosa en una célula animal y una célula vegetal. Degradación de glucosa: glicólisis. Localización celular. Etapas. Producción de energía. Regulación. Balance energético en condiciones de anaerobiosis. Destino del piruvato. Fermentaciones. Degradación de otras hexosas. BOLILLA 4: Destino del piruvato en condiciones aeróbicas. Complejo de la piruvato deshidrogenasa. Ciclo de Krebs. Localización celular. Balance energético del ciclo. Regulación. Reacciones anapleróticas según el tipo de célula o tejido. Naturaleza anfibólica del ciclo. Sistemas de lanzaderas: Lanzadera del glicerofosfato y lanzadera del malato-aspartato. Balance energético de la degradación de glucosa en condiciones de aerobiosis. Efecto Pasteur. Vía de las pentosas. Localización. Importancia metabólica. BOLILLA 5: Biosíntesis de carbohidratos. Gluconeogénesis. Etapas. Regulación. Costo energético. Ciclos fútiles. Biosíntesis del glucógeno. Regulación coordinada entre la degradación y la síntesis del glucógeno. Costo energético. Biosíntesis de almidón. Síntesis fotosintética de glúcidos. Reacciones de fijación y reducción fotosintética del carbono, ciclo de Calvin. Regulación. Fotorrespiración y ruta C4. Biosíntesis de almidón, sacarosa y celulosa en vegetales.

2 GLUCONEOGENESIS -Es una vía por la cual se puede sintetizar glucosa y glucógeno a partir de precursores no glucídicos: - Glicerol (proveniente de la degradación de ácidos grasos). - Aminoácidos (derivados del recambio de proteínas). - α-cetoácidos (productos de la degradación de aminoácidos). - Lactato (del metabolismo anaerobio). - Acetil-CoA (sólo en plantas y algunas bacterias) -En los mamíferos, ocurre principalmente en hígado y riñón. - Revierte las tres reacciones irreversibles de la vía glicolítica a través de las reacciones (de desvío) catalizadas por: Piruvato carboxilasa - Piruvato carboxilasa (mitocondrial). PEP carboxiquinasa - PEP carboxiquinasa (isoenzimas, citosólica y mitocondrial). Fru-1,6- fosfatasa - Fru-1,6- fosfatasa (citosólica). Glu-6-fosfatasa - Glu-6-fosfatasa (citosólica, solo en hígado). - Es un proceso que consume energía metabólica.

3 Glucosa Acs. Grasos

4 Glucólisis Gluconeogénesis

5 Gluconeogenesis Reacciones reversibles de la VG Costo energético - A partir de piruvato 2 piruvato (3C)1 Glu (6C) PC 1 ATP (x 2) = 2 ATP PEPCQ1 GTP (x 2) = 2 GTP PGQ1 ATP (x 2) = 2 ATP PGQ (ATP) GQ (ATP) - A partir de glicerol 2 glicerol (3C)1 Glu (6C) GQ1 ATP (x 2) = 2 ATP

6 REGULACION DE LA GLUCONEOGENESIS HORMONAL: GLUCAGON Y ADRENALINA ACTIVAN LAS ENZIMAS REGULADORAS DE LA GLUCONEOGENESIS ALOSTERICA: FRUCTOSA-1,6-BISFOSFATASA PIRUVATO CARBOXILASA FOSFOENOLPIRUVATO CARBOXIQUINASA

7 Ciclos fútiles Los ciclos fútiles, son ciclos metabólicos inútiles que producen un derroche de energía (ATP). Se producen cuando no existe una regulación o control adecuado de las reacciones involucradas. Por ejemplo: ó En ambos casos, de no existir regulación metabólica: ATP + H2O ADP + Pi GLUCOLISISGLUCOLISIS GLUCONEOGENESISGLUCONEOGENESIS Citrato

8 Regulación de la Gluconeogenesis ¿Cuándo se activa la gluconeogénesis? - Ingesta de una dieta pobre en carbohidratos. Disminución de la glucemia ( Glucagón). - Durante y luego de una actividad muscular intensa. ( Adrenalina)

9 GLUCOSA-6-P Destinos metabólicos de la glucosa Glucógeno- génesis Glucógeno Via de las Pentosas Ribosa-5-P Piruvato Via Glicolitica Glucosa Glucosa-6-fosfatasa (solo en hígado) Gluconeo- genesis Glucógeno- lisis

10 Estructura del Glucógeno Extremos no reductores Unión α-1,6 Unión α-1,4

11 El hepatocito muestra abundantes gránulos de glucógeno Tinción de PAS El Glucógeno abunda en el hígado (10% peso) y en músculo esquelético (3% peso), es un polímero de la glucosa y, por tanto, una forma de almacenamiento de glucosa dentro de la célula que le sirve de reservorio energético, es de elevado peso molecular, y sin embargo es soluble en agua, una función similar la desempeña el almidón en el mundo vegetal. Micrografía electrónica

12 METABOLISMO DEL GLUCOGENO DEGRADACIONBIOSINTESIS GLUCOGENOGENESIS GLUCOGENOLISIS La síntesis y degradación de glucógeno están cuidadosamente reguladas entre sí para cumplir con las necesidades energéticas de la célula.

13 GLUCOGENOGENESIS (Síntesis de glucógeno) El exceso de glucosa es convertido en formas poliméricas (reserva)

14 La biosíntesis del glucógeno consiste en la adición sucesiva de unidades de glucosa, utilizando una molécula donadora de glucosa: la UDP-glucosa. GLUCOGENOGENESIS

15 En la síntesis de glucógeno intervienen tres enzimas: 1)UDP-glucosa pirofosforilasa (glucosa-1-P uridil transferasa) 2)Glucógeno sintasa 3)Amilo α(1,41,6) glucosil transferasa o Enzima ramificante del glucógeno GLUCOGENOGENESIS

16 UDP-glucosa pirofosforilasa Activación de las unidades de glucosa a UDP-Glucosa Glu-6-P Fosfoglucomutasa

17 Se necesitan tres enzimas diferentes para sintetizar glucógeno: 1)UDP-glucosa pirofosforilasa (glucosa-1-P uridil transferasa) 2)Glucógeno sintasa 3)Amilo α(1,41,6) glucosil transferasa o Enzima ramificante del glucógeno GLUCOGENOGENESIS

18 El cebador de la glucógeno sintasa es una cadena corta de residuos de glucosa ensamblados por una proteína denominada Glucogenina. GLUCOGENINA Tyr UDP GLU-Glucogenina Protein-Tyr glucosil transferasa

19 GLUCOGENINA Tyr 194 UDP O

20 Polimerización: adición de las unidades de glucosa Glucógeno sintasa

21 Se necesitan tres enzimas diferentes para sintetizar glucógeno: 1)UDP-glucosa pirofosforilasa (glucosa-1-P uridil transferasa) 2)Glucógeno sintasa 3)Amilo α(1,41,6) glucosil transferasa o Enzima ramificante del glucógeno GLUCOGENOGENESIS

22 Amilo α(1,4 1,6)-glucosil transferasa Extremos no reductores Punto de ramificación (α-1,6) Ramificación Ramificación : una enzima ramificante (amilo (1,4 1,6)- glucosil transferasa) traslada una cadena terminal de unos seis o siete residuos de glucosa, a un grupo hidroxilo situado en la posición 6 de un residuo de glucosa en el interior del polímero formandose enlaces ( 1->6) en los puntos de ramificación.

23 Proteína-Tyr glucosil transferasa (glucogenina) glucogenina Glucógeno sintasa Glucógeno sintasa y Enzima ramificante Partícula de Glucógeno Glucogenina

24 GASTO ENERGETICO EN LA SINTESIS DE GLUCOGENO. Fosforilaci ó n de Glu a Glu-6-P 1 ATP. Activación de Glu-1-P a UDP-Glu 1 UTP. Hidrólisis PP a 2 Pi (se rompe una unión de alta energía) Por cada unidad de GLU que se utiliza en la síntesis de glucógeno, se gastan: 2 ATP y 3 uniones ricas en energía.

25 REGULACION DE LA GLUCOGENOGENESIS REGULACION ALOSTERICA: Glu-6-P (+), Ca ++ (-), Glucogeno (-) la Glucógeno sintasa. REGULACION POR MODIFICACION COVALENTE: FOSFORILACION/DESFOSFORILACION de la Glucógeno sintasa. REGULACION HORMONAL: INSULINA, GLUCAGON (Hepatocitos), ADRENALINA (Cels. Musculares).

26 REGULACIÓN HORMONAL Y POR MODIFICACIÓN COVALENTE Cuando la Glucógeno sintasa (GS) está fosforilada es poco activa (GSb), mientras que cuando se encuentra desfosforilada es muy activa (GSa). Esta regulación está sometida a control hormonal. Sintasa A (muy activa) Sintasa B (poco activa) P Fosfatasa P Quinasa ATP ADP INSULINA ADRENALINA GLUCAGÓN (+)

27 DEGRADACION DEL GLUCOGENO (GLUCOGENOLISIS) SE ACTIVA CUANDO LA CELULA NECESITA ENERGIA Y NO DISPONE DE GLUCOSA. TIENE LUGAR EN EL CITOPLASMA CELULAR. PROCESO MUY ACTIVO EN HIGADO Y MUSCULO ESQUELETICO.

28 NECESIDAD DE GLUCOSA: ENTRE COMIDAS ACTIVIDAD MUSCULAR VIGOROSA. HIGADO Y MÚSCULO: DEPOSITOS O RESERVA DE GLUCÓGENO GLUCOGENOLISIS

29 GLUCOGENOLISIS Y precisa de la acción combinada de tres enzimas diferentes: 1)Glucógeno fosforilasa Enzima desramificante o Amilo-α (1,6)-glucosidasa 2) Enzima desramificante o Amilo-α (1,6)-glucosidasa Fosfoglucomutasa 3) Fosfoglucomutasa Requiere de dos reacciones: 1) Eliminación de GLUCOSA del extremo no reductor (uniones α-1,4) 2) Hidrólisis de los enlaces glucosídicos en los puntos de ramificación (uniones α-1,6)

30 Glucógeno fosforilasa (dímero)

31 Glucógeno fosforilasa Enzima desramificante Enzima desramificante ( 1,4 1,4) glucanotransfersa ( 1 6) glucosidasa Hexoquinasa Glu-6-P Fosfogluco- mutasa n Glu-6-P

32 REGULACION DE LA GLUCOGENOLISIS REGULACION ALOSTERICA: AMP (+), ATP(-), Glu-6- P (-) la Glucógeno fosforilasa. REGULACION POR MODIFICACION COVALENTE: FOSFORILACION/DESFOSFORILACION de la Glucógeno fosforilasa. REGULACION HORMONAL: INSULINA, GLUCAGON (Hepatocitos), ADRENALINA (Cels. Musculares).

33 REGULACION POR MODIFICACION COVALENTE Consiste en modificar la actividad de la glucógeno fosforilasa mediante fosforilación: la fosforilasa B (poco activa) no está fosforilada, mientras que la fosforilasa A (muy activa) se encuentra FOSFORILADA. Esta regulación está sometida a control hormonal. Fosforilasa fosfatasa (PPT) Fosforilasa quinasa Glucagón (higado) Adrenalina Ca 2+, AMP (músculo) Insulina (+)

34 Debido al diferente papel del glucógeno muscular y el hepático, la regulación hormonal es diferente en estos órganos.

35 REGULACION DE LA GLUCOGENOLISIS MUSCULAR El glucógeno del músculo esquelético tiene como finalidad suministrar glucosa para que sea degradada oxidativamente (VG) y se pueda obtener ATP para la actividad muscular. Cuando se precisa realizar trabajo muscular, el SNC estimula la médula adrenal (glándula adrenal), que secreta ADRENALINA

36 REGULACION DE LA GLUCOGENOLISIS HEPATICA El glucógeno hepático sirve como fuente de glucosa para los tejidos extrahepáticos, incluido el músculo esquelético, así el hígado mantiene la glucemia. Ante un descenso de la glucemia el páncreas libera GLUCAGÓN. Mientras que ante un aumento de la glucemia, el páncreas libera INSULINA.

37 Adrenalina (músculo) Glucagón (hígado) Célula hepática o muscular

38 MúsculoHígado

39 Regulación por Insulina Glucemia Luego de una comida PANCREAS Insulina Fosforilasa fosfatasa

40 Glu-6-P (-) ATP (-) Ca++ (+) AMP (+) Hígado y Músculo Glu-6-P (+) Hígado y Músculo

41 Hígado Glucemia Entre comidas Dieta libre de carbohidratos PANCREAS Carrera Estrés emocional Agresión física Escape de un predador SNCMEDULA ADRENAL Inhibición de la Glucogenogénesis Activación de la Glucogenolisis

42 Cuando se ingieren carbohidratos con la dieta y los niveles de glucemia aumentan, la actividad de la glucógeno fosforilasa-A hepática disminuye rápidamente y, después de un tiempo (o tiempo de latencia) aumenta rápidamente la actividad glucógeno sintasa. METABOLISMO DEL GLUCOGENO HEPATICO Y CONTROL DE LA GLUCEMIA

43 Bibliografía 1- BLANCO A., Química Biológica, Ed. El Ateneo, 8a edic., Bs. As. (2007). 2- LEHNINGER, A.L., "Principios de Bioquímica", Ed. Omega, 4ª ed. (2008). 3- LIM M.Y., Lo esencial en Metabolismo y Nutrición, Ed. Elsevier, 3ra. ed., Barcelona (2010). Bibliografía Complementaria 1- CAMPBELL Y FARREL, Bioquimica, Thomson Eds., 4ta. Ed., (2005). 2- SALISBURY Y ROSS, Fisiología vegetal, Grupo Ed. Iberoamericana, (1994). 3- HILL, WYSE Y ANDERSON, Fisiología animal, Ed. Med. Panamericana,(2006), Madrid, España.


Descargar ppt "QUIMICA BIOLOGICA Lic. y Prof. en Ciencias Biológicas BOLILLA 3: -.Metabolismo. Principales nutrientes de autótrofos y heterótrofos. Catabolismo. Anabolismo."

Presentaciones similares


Anuncios Google