La descarga está en progreso. Por favor, espere

La descarga está en progreso. Por favor, espere

Resolviendo ecuaciones cuadráticas por medio de: MTE. Adriana Chan Canul.

Presentaciones similares


Presentación del tema: "Resolviendo ecuaciones cuadráticas por medio de: MTE. Adriana Chan Canul."— Transcripción de la presentación:

1 Resolviendo ecuaciones cuadráticas por medio de: MTE. Adriana Chan Canul

2 Debes tomar en cuenta los siguientes aspectos: Si la ecuación no está reducida entonces debemos realizar las operaciones necesarias para reducirla a la forma: ax² + bx + c = 0

3 Ejemplo: 4x 2 - 5x + 1 = 3x 2 - 7x + 4 Reduciendo 4x 2 - 5x x 2 + 7x - 4 = 0 x 2 + 2x – 3 = 0

4 Valores de los coeficientes: a 2 + bx + c = 0 x 2 + 2x - 3 = 0 a = 1 b = 2 c = - 3

5 Aplicando la Fórmula General Para resolver cualquier ecuación cuadrática puede utilizarse La siguiente fórmula, conocida como: Fórmula General - b + b 2 - 4ac 2a x =

6 Con la ecuación x 2 + 2x - 3 = 0 Sustituimos los valores en la fórmula general : a = 1 b = 2 c= – 4 (1) (-3) 2 (1)

7 Realizando la operación: 1. Resolvemos las operaciones de la raíz a) b) c)

8 Signo + Significado del signo ± En las ecuaciones de segundo grado se obtienen dos Soluciones: una la obtendremos usando el signo + y otra usando el signo – Las cuales se obtienen por separado = = 1 Por lo tanto x1 = 1 – 2 – 4 2 – 6 2 = = – 3 Por lo tanto x2 = – 3 Signo – –

9 Debes saber que: a)Las ecuaciones de segundo grado pueden tener una, dos o ninguna solución. b) Cuando no hay término en x, la ecuación se puede resolver pasando el término independiente al otro lado y tomando raíces cuadradas. c) Cuando no hay término independiente, la ecuación se puede resolver sacando factor común la x (con lo cual una solución es x = 0) y reduciendo la ecuación a una de primer grado.

10 La ecuación x 2 + x - 2 = 0 tiene dos soluciones, x = 1 y x = - 2. La ecuación x 2 - 6·x + 9 = 0 tiene una única solución, x = 3. La ecuación x = 0 no tiene soluciones reales.

11 Por el momento es todo, ahora solo nos falta practicar para poder comprender el tema. Como siempre les deseo mucho éxito en sus actividades. MTE. Adriana del R. Chan Canul


Descargar ppt "Resolviendo ecuaciones cuadráticas por medio de: MTE. Adriana Chan Canul."

Presentaciones similares


Anuncios Google