La descarga está en progreso. Por favor, espere

La descarga está en progreso. Por favor, espere

Problema 1 Una fábrica de carrocerías de automóviles y camiones tiene 2 naves. En la nave A, para hacer la carrocería de un camión, se invierten 7 días-operario,

Presentaciones similares


Presentación del tema: "Problema 1 Una fábrica de carrocerías de automóviles y camiones tiene 2 naves. En la nave A, para hacer la carrocería de un camión, se invierten 7 días-operario,"— Transcripción de la presentación:

1

2 Problema 1 Una fábrica de carrocerías de automóviles y camiones tiene 2 naves. En la nave A, para hacer la carrocería de un camión, se invierten 7 días-operario, para fabricar la de un auto se precisan 2 días-operario. En la nave B se invierten 3 días- operario tanto en carrocerías de camión como de auto. Por limitaciones de mano de obra y maquinaria, la nave A dispone de 300 días-operario, y la nave B de 270 días-operario. Si los beneficios que se obtienen por cada camión son de 6 millones y de 3 millones por cada auto. ¿Cuántas unidades de cada clase se deben producir para maximizar las ganancias?

3 Sean las variables: x= número de camiones fabricados. y= número de autos fabricados. La función a maximizar es: MAX(G) = x y Restricciones: 7X + 2 y 3X + 3 y

4 Nave ANave B Días- operario (camión) X 7X3X Días-operario (auto) Y 2Y3Y

5 I ) F.O : MAX(G) = x y II) S.a : 7X +2 y < 300 3X + 3 y < 270 III. C.N.N : X>=0, Y >= 0

6 7X +2 y < 300 3X + 3 y < Deducimos que : X=24 Y=66 - Reemplazando: MAX(G) = (24) (66)=

7 Un sastre tiene 80 m2 de tela de algodón y 120 m2 de tela de lana. Un traje requiere 1 m2 de algodón y 3 m2 de lana, y un vestido de mujer requiere 2 m2 de cada una de las dos telas. Calcular el número de trajes y vestidos que debe confeccionar el sastre para maximizar los beneficios si un traje y un vestido se venden al mismo precio. Problema 2

8 Sean las variables de decisión: x = Numero de viviendas construidas tipo A y = Numero de viviendas construidas tipo B. P = Precio común del traje y del vestido. La función objetivo es: MAX(B) = PX + PY

9 PRENDASALGODÓNLANACOSTO TRAJE XX1X3xPX VESTIDO YY2y PY 80120

10 I ) F.O : MAX(B) = PX + PY II) S.a : X + 2Y < 80 3X + 2Y < 120 III. C.N.N : X>=0, Y >= 0

11 3X + 2Y < 120 X + 2Y < 80 2X < 40 X < 20 Reemplazando X=20 en la ecuacion : Y = 30 Cumpliendo con las condiciones. MAX(B) = P(20) + P(30)

12 Problema 3 Se va a organizar una planta de un taller de automóviles donde van a trabajar electricistas y mecánicos. Por necesidades de mercado, es necesario que haya mayor o igual número de mecánicos que de electricistas y que el número de mecánicos no supere al doble que el de electricistas. En total hay disponibles 30 electricistas y 20 mecánicos. El beneficio de la empresa por jornada es de 250 euros por electricista y 200 euros por mecánico. ¿Cuántos trabajadores de cada clase deben elegirse para obtener el máximo beneficio y cual es este?

13 X= Trabajadores Electricistas Y= Trabajadores Mecánicos - Máximo beneficio es el objetivo Px= 250 euros Py= 200 euros Max(B)=250X+200Y - Nº de electricistas X=30 - Nº de mecánicos Y= 20 Por necesidad del mercado X > Y El número de mecánicos no supere al doble que el de electricistas

14 I ) F.O : MAX(B) =250X+ 200Y II) S.a : X + Y = 40 (Trabajadores) X > 20 y = 20 x < 2y x - 2y < 0 III. C.N.N : X>=0, Y >= 0

15 X + Y = 40 (Trabajadores) X > 20 Y = 20 X – 2Y < 0 Se deduce que X y Y son igual a 20 MAX(B) =250(20) + 200(20) = 9000

16 Problema 4 Una compañía posee dos minas: la mina A produce cada día 1 tonelada de hierro de alta calidad, 3 toneladas de calidad media y 5 de baja calidad. La mina B produce cada día 2 toneladas de cada una de las tres calidades. La compañía necesita al menos 80 toneladas de mineral de alta calidad, 160 toneladas de calidad media y 200 de baja calidad. Sabiendo que el coste diario de la operación es de 2000 euros en cada mina ¿cuántos días debe trabajar cada mina para que el coste sea mínimo?

17 X= Producción de mina A Y= Producción de mina B PX=2000 PY=2000 El objetivo es minimizar la inversión - Se sabe que el coste diario de inversión es 2000 euros en cada mina

18 DIASALTA CALIDAD MEDIA CALIDAD BAJA CALIDAD COSTO DIARIO MINA XX1x3x5x2000x MINA Yy2y 2000y

19 I ) F.O : MIN(C) =2000X Y II) S.a : X + Y = 2000 EUROS X + 2Y > 80 3X + 2Y > 160 5X + 2Y > 200 III. C.N.N : X>=0, Y >= 0

20 X + 2Y > 80 3X + 2Y > 160 5X + 2Y > 200 Del sistema de ecuaciones deducimos que: X = 20 Y = 50 MIN(C) = 2000(20) (50) =


Descargar ppt "Problema 1 Una fábrica de carrocerías de automóviles y camiones tiene 2 naves. En la nave A, para hacer la carrocería de un camión, se invierten 7 días-operario,"

Presentaciones similares


Anuncios Google