La descarga está en progreso. Por favor, espere

La descarga está en progreso. Por favor, espere

INSTITUCION EDUCATIVA REPÚBLICA DE VENEZUELA ESP. LUIS GONZALO PULGARÍN R LOS CONJUNTOS Y SUS CLASES GRADO CUARTO MEDELLÍN ANTIOQUIA www.lugopul.wordpress.omwww.lugopul.wordpress.om.

Presentaciones similares


Presentación del tema: "INSTITUCION EDUCATIVA REPÚBLICA DE VENEZUELA ESP. LUIS GONZALO PULGARÍN R LOS CONJUNTOS Y SUS CLASES GRADO CUARTO MEDELLÍN ANTIOQUIA www.lugopul.wordpress.omwww.lugopul.wordpress.om."— Transcripción de la presentación:

1 INSTITUCION EDUCATIVA REPÚBLICA DE VENEZUELA ESP. LUIS GONZALO PULGARÍN R LOS CONJUNTOS Y SUS CLASES GRADO CUARTO MEDELLÍN ANTIOQUIA

2 Es toda colección o agrupación de objetos o seres con características comunes. Los objetos o seres que forman un conjunto se llaman miembros o elementos del conjunto. Ejemplo A= {días de la semana} A = {lunes, martes, miércoles, …domingo} En general en matemáticas se acostumbra a nombrar los conjuntos con letras mayúsculas tales como A, B, C…

3 y los elementos con letras minúsculas, separados por comas y encerrando sus elementos entre llaves { }. Ejemplo: a) El conjunto de los números dígitos D = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} b) El conjunto de las vocales V = {a, e, i, o, u} c) Animales acuáticos M = {ballena, delfín, bagre, tiburón, pulpo}

4 Los conjuntos también suelen representarse mediante líneas cerradas en cuyo interior los elementos del conjunto se simbolizan por puntos. Estos son los denominados Diagramas de Venn D.a.e.i.o V.u Los diagramas de Venn se deben al filósofo inglés John Venn ( )

5 Es el que tiene todos los elementos identificables mediante una propiedad común. Conjunto universal es el que incluye a todos los conjuntos de una misma especie. Se denota con la letra U. Ejemplo: U = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} A = {1, 3, 5, 7, 9} B = {0, 2, 4, 6, 8}

6 Es el que sus elementos se pueden ordenar y son contables. Ejemplo: a) El conjunto de los números dígitos b) El conjunto de los planetas Es aquel en que el proceso de contar todos sus elementos nunca termina. Ejemplo: a)El conjunto de los números naturales D = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9…..} b) El conjunto de los números pares

7 Es el conjunto que está constituido por un solo elemento. Ejemplo: l presidente de Colombia V={Santos} F= {luna} b) El satélite natural de la tierra Es el conjunto que no tiene elementos y se denota así: ó { } a) Un número par terminado en 5 b) Un múltiplo de 2 terminado en 3

8 Hola viejo, veremos la forma de nombrar o determinar un conjunto a) V = {a, e, i, o, u} Se llama por extensión b) M = {do, re, mi, fa, sol, la, si} a) V = {x/x es una vocal} b) M = {x/x es una nota musical} Se llama por comprensión

9 Hay dos formas de determinar un conjunto, por Extensión y por Comprensión Nombrando o enumerando cada uno de los elementos que forman el conjunto. Ejemplo: El conjunto de los números pares mayores que 3 y menores que 18. A = { 4,6,8,10,12,14,16, } V = {a, e, i, o, u}

10 Es aquella forma mediante la cual se da una propiedad que caracteriza a todos los elementos del conjunto. Ejemplo: a) V = {x/x es una vocal} Se lee: EL conjunto V formado por los elementos x tal que x es unA VOCAL V= {a, e, i, o, u} por extensión b) M = {x/x es una nota musical} M = {do, re, mi, fa, sol, la, si}

11 Veamos otros ejemplo por comprensión y extensión P = { los números dígitos } Comprensión se puede entender que el conjunto P esta formado por los números P= { 0,1,2,3,4,5,6,7,8,9.} Extensión A = {x|x es un número primo menor que 30} Comprensión A = {2, 3, 5, 7, 11, 13, 17, 19, 23, 29} Extensión

12 EJERCICIOS DE APLICACIÓN 1.Determinar los siguientes conjuntos, (Por extensión) escribiendo todos sus elementos. H = {letras de la palabra amistad} H = { } J = {nombre de las niñas de tu aula} J= {…………………………………………………………………. } K = {nombre del presidente del Colombia y Venezuela} K = {…………………………………………………………………. } L = {animales domésticos } L= {…………………………………………………………………. } A = {números naturales mayores que 9 pero menores que 18} A= {…………………………………………………………………. } 2. Determinar los siguientes conjuntos, (por comprensión) escribiendo una propiedad común para todos los elementos. M = {manzana, plátano, naranja} M= {…………………………………………………………………. } N = {índice, pulgar, cordial, anular, meñique} N = {…………………………………………………………………. } Ñ = {do, re, mi, fa, sol, la, si} Ñ= {…………………………………………………………………. } P = {norte, sur, este, oeste} P= {…………………………………………………………………. } Q = {a, b, c, d, e, f, g, h, i, j,…} Q = {…………………………………………………………………. }

13 Dos conjuntos A y B son iguales si ambos tienen los mismos elementos, se denota: A = B Si los conjuntos no tienen los mismos elementos. Se escribe A BEjemplo: 1) A = {r, a, m, o} B = {a, m, o, r} A = B 2) M = {p, a, l, o} N = {l, u, p, a } M N

14 Un conjunto A esta incluido en otro conjunto B,sí y sólo sí, todo elemento de A es también elemento de B. Se lee : A está incluido en B, A es subconjunto de B, A está contenido en B, A es parte de B. Lo escribimos: Para indicar que un conjunto B no está incluido en un conjunto A. escribimos: A B Ejemplo: REPRESENTACIÓN GRÁFICA : A B

15 Ejemplo: A={ 2, 4} y B={1, 2, 3, 4, 5, 6 } A B Observa que A está incluido en B, por lo tanto A es Subconjunto de B P = { m,u,r,c,i,e,l,a,g,o } M = { p, e, r, a, s } M P M no está incluido en P

16 Veamos otros ejemplos A = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} B = {0, 2, 4, 6, 8} C = {5, 7, 11, 13} D = {1, 3, 5, 7} B A (B está incluido en A) C A (C no está incluido en A) D A (D está incluido en A)

17 Para indicar que un objeto x es un elemento de un conjunto A, se denota así: x A Y se lee x pertenece al conjunto A Si en caso contrario no pertenece, se denota Y se lee x no pertenece al conjunto A Ejemplo: A = {1, 2, 3, 4, 5} B = {3, 4, 5, 6, 7} 3 A 3 B 7 A 2 B 7 B 1 B

18 ACTIVIDAES PRÁCTICAS A = {1, 3, 5, 6} B = {2, 4, 6} 1. Escribe el símbolo pertenece o no pertenece SEGÚN EL CASO 5....A 4....A 5....B 6....A 6....B 1... A 2....A 2....B 3....B 1…B 4…B 2. Práctica: Según el diagrama completa con el símbolo de pertenencia o no pertenencia a.....F b....F e......F p.....F l.... F m......F c.....F d.....F 3. Realiza un ejemplo de subconjunto y Represéntalo gráficamente


Descargar ppt "INSTITUCION EDUCATIVA REPÚBLICA DE VENEZUELA ESP. LUIS GONZALO PULGARÍN R LOS CONJUNTOS Y SUS CLASES GRADO CUARTO MEDELLÍN ANTIOQUIA www.lugopul.wordpress.omwww.lugopul.wordpress.om."

Presentaciones similares


Anuncios Google