La descarga está en progreso. Por favor, espere

La descarga está en progreso. Por favor, espere

T student para muestras simples JUAN JOSÉ HERNÁNDEZ OCAÑA 1.-Si no se conoce la varianza de la población 2.- Si los datos siguen una distribución normal.

Presentaciones similares


Presentación del tema: "T student para muestras simples JUAN JOSÉ HERNÁNDEZ OCAÑA 1.-Si no se conoce la varianza de la población 2.- Si los datos siguen una distribución normal."— Transcripción de la presentación:

1 t student para muestras simples JUAN JOSÉ HERNÁNDEZ OCAÑA 1.-Si no se conoce la varianza de la población 2.- Si los datos siguen una distribución normal Condiciones

2 Hay que considerar que tanto el estadístico Z como el estadístico t student para muestras simples, nos permite comparar una muestra con una población.

3 Estadístico t Estadístico z Estadístico t Se conoce el valor de la varianza de la población Se desconoce el valor de la varianza de la población El valor de la desviación estándar no está en función del tamaño de la muestra Se emplea la desviación estándar de la muestra Hay una sola distribución normal estándar para todo valor de σ/n para cada tamaño de la muestra existe una distribución diferente Tiene una variable aleatoria xTiene dos variables aleatorias x y s

4 Distribución t Se considera que la distribución t tiene una mayor variabilidad que la distribución z debido a que en su análisis de datos se emplea la desviación estándar de la muestra y no la de la población ( en ésta encontramos una menor variabilidad en los datos) El estadístico t, tiene dos variables aleatorias que son la media muestral y la desviación típica de la muestra que son independientes entre sí.

5 El valor de la desviación estándar depende del valor de n y por ello se tienen múltiples distribuciones para diferentes valores de n La curva t está totalmente definida en función del tamaño de la muestra (y por ende, de los grados de libertad ) Debido a ello es necesario ajustar empleando los grados de libertad ( n -1) para determinar los valores para cada distribución diferente.

6 Distribución t Hay que considerar que, conforme el tamaño de la muestra aumenta, la curva t se vuelve más semejante a la curva normal de la distribución z ( muestras mayores a 30). En el caso del estadístico z, la distribución de la muestra no depende del valor de n Pero para el estadístico t, la distribución de la muestra, sí depende del valor de n

7 EJEMPLO Sí consideramos el valor de alfa como 0.05 Y una curva direccional, esto es, de una cola Cuales son los valores criticos de z y t Para las siguientes muestras ? Considere que para buscar el valoren la tabla de t student se emplea (gl)= n - 1 Tamaño de la muestra Estadístico valor critico z 1.65 valor critico t student

8 Distribución t student Uso de tabla Para el cálculo de los valores de t critico se debe considerar lo siguiente: El valor critico t es el punto de corte de la región de rechazo de la distribución considerando los grados de libertad Los grados de libertad se obtienen mediante n-1 esto es, el número del tamaño de la muestra menos uno. En el caso de problemas que impliquen hipótesis unidireccionales deberemos emplear el apartado de área para una cola En el caso de problemas que impliquen una hipótesis bidireccionales, deberemos emplear la tabla para el área de dos colas

9 Ejercicios USO DE TABLAS 7.- Para una distribución de una muestra de 12 datos, obténgase el valor critico de t, en el caso de una curva de una cola ( hipótesis unidireccional) a cada una de las siguientes áreas bajo la curva A.- Para un alfa de ( el 2.5 %) 2.2o B.-Para un alfa de 0.05 ( 5%) 1.79 C.- Para un alfa de 0.01 ( 1% ) 2.71 Considerando una muestra de 12 datos, determine los valores para el caso de una hipótesis bidireccional, ( curva de dos colas) 0.05 … …

10 Ejercicios Sea X el salario por hora de cualquier psicólogo seleccionado al azar. Si los valores críticos de t fueran 2.624, y de para un alfa de ¿ qué tan grande debería ser el tamaño de la muestra para una prueba de una cola? Considere la formula para calcular los grados de libertad. ( n-1) Nos dan los valores críticos de t Nos piden saber el tamaño de la muestra … n Vemos en tabla el valor y consideramos el valor de gl Ajustamos con ahora con gl + 1 Para …. gl es 14, por lo que n es 15 Para …gl es 24 por lo que n es 25 Para 2.423… gl es 40 por lo que n es 41

11 Criterios para prueba de Hipótesis Rechazo Ho sí t obt t critico

12 Ejercicios resueltos empleando estadístico t 1.- Se supone que una máquina vendedora automática proporciona 8oz de café. Para probar su funcionamiento correcto se toman 16 tazas de café como muestra. Se determina que la media de la muestra es de 7.5oz y el valor de la desviación estándar de la muestra es de 0.8oz. Pruébese la hipótesis nula de que la máquina está operando adecuadamente contra la hipótesis alternativa que afirma que no está funcionando adecuadamente. Use un nivel de significancia de 0.01 Determine la Hipótesis Nula Determine la Hipótesis Alternativa Cuáles serían sus conclusiones? Empleamos estadístico t ya que el número de la muestra es de 16 ( son 16 mediciones) y no se conoce la desviación de la población.

13 Ejercicios estadístico t student 3.- La FDA está realizando una prueba para determinar si una nueva medicina tiene el indeseable efecto lateral de elevar la temperatura del cuerpo. Se sabe que la temperatura del cuerpo humano se distribuye normalmente con una media de F. Para probar su hipótesis la FDA administra la nueva medicina a nueve pacientes, se toman las temperaturas corporales en los mismos y se obtiene una media de 99 0 F, con una desviación estándar de F de los datos. Debería permitirse a la compañía poner en venta la nueva medicina ? Emplee un alfa de 0.01 para la toma de decisiones

14 Un fabricante de baterías tomó una muestra de 13 baterías, de la producción diaria y las utilizó de manera continua hasta agotarlas ( los resultados se encuentran en la tabla adjunta) Con un nivel de significancia de 0.05, ¿existe evidencia de que la vida media de las baterías es mayor a 400 horas Utilizando la información anterior ¿ sería conveniente que el fabricante colocará anuncios de que las baterías duran más de 24 horas? BateríaDuración en horas

15 Usted es el gerente de un restaurante de comida rápida. Durante el año pasado, el tiempo promedio de espera en una ventanilla de servicio de un automóvil, fue de 3.7 minutos. El dueño de la franquicia le ayuda a establecer un nuevo proceso que pretende reducir el tiempo de espera. Usted selecciona una muestra aleatoria de 28 pedidos obteniendo una media muestral del tiempo de espera es de 3.57 minutos, con una desviación estándar muestral de 0.8 minutos. Utilizando un nivel de significancia de 0.05 ¿ existen evidencias de que la media poblacional del tiempo de espera es ahora menor a que 3.7 minutos?

16 | Se registraron los pesos al nacimiento (en kg) de una muestra de 25 bebés hombres nacidos de madres que tomaron complemento vitamínico especial. Los resultados mostraron una media de kg y una desviación estándar de los datos de Podría asegurar con un alfa de 0.05, qué los bebés cuyas madres habían tomado el vitamínico pesan más que 3.40 kg, que es la media poblacional?

17 Inferencia a partir de dos muestras Prueba de hipótesis

18 En muchas ocasiones es muy difícil contar con datos disponibles de la población Además hay que considerar que existen muchos casos en las que es necesario comparar dos conjuntos de datos muestrales y no necesariamente datos poblacionales Se han empleado ejemplos que implicaron el uso de una muestra para hacer una inferencia acerca de una población

19 Por ejemplo : queremos saber las diferencias entre los patrones de compra entre mujeres jóvenes y mujeres adultas Por ejemplo :queremos saber los niveles de stress en diferentes áreas de la empresa

20 Elección de estadístico de prueba Para muestras de tamaño mayores a 30, se empleará el estadístico Z Para muestras de tamaño menores a 30, se empleará el estadístico t

21 2.- Grupos independientes t student para tamaño de muestra menores a 30 estadístico z para un tamaño de muestra mayores a 30 Análisis de varianza 1.- Grupos dependientes Se empleará el estadístico t student 1.- Para datos cualitativos Se usará estadístico z para dos proporciones

22 la característica esencial del diseño es que se usan datos apareados entre ambas condiciones y los puntajes de diferencia de cada par son analizados para determinar si el azar, por sí solo, puede explicarlos razonablemente (1) Cada sujeto u objeto es sometido a dos condiciones diferentes

23 Diferencias entre dos medias para grupos correlacionados o dependientes Grupos dependientes Se denominan medias dependientes porque las medias de cada grupo de valores dependen entre sí en cuanto pertenecen a la misma persona u objeto Son pares coincidentes, no es una relación de correlación entre variables, esto es, no implica que x sea función de y o viceversa. En este caso se requiere obtener una nueva variable aleatoria para poder realizar la comparación entre las medias. Por ello se empleará la diferencia entre dos observaciones de cada par coincidente o dependiente.

24 Ho µ 1 = µ 2 µ 1 - µ 2 = 0 n o existe diferencia entre las dos medias de los dos grupos y los resultados encontrados se pueden explicar por el azar Ha µ 1 µ 2 µ 1 - µ 2 0 existen diferencias entre las medias de los dos grupos y los resultados pueden ser explicados en función de la variable

25 Supuestos para datos apareados 1.-Los datos muestrales consisten en datos apareados existe alguna relación para que cada valor en un muestra se aparee con un valor correspondiente en la otra muestras 2- Las muestras son aleatorias simples 3.- Cualquiera o ambas de estas condiciones se satisface: a.-el número de datos apareados o datos muestrales es menor a 30 b.- los pares de valores tienen diferencias que se toman de una población con una distribución aproximadamente normal

26 D puntaje de la diferencia D promedio media de los puntajes de diferencia de la muestra sd desviación estándar de los puntajes de la diferencia de la muestra N número de puntajes de diferencia SCd suma de los cuadrados de los puntajes de diferencia de la muestra

27 Esta formula se empleará cuando se pretenda establecer una diferencia especifica en la condición antes y en la condición después

28 Ejercicio resuelto Grupos Dependientes El neurotransmisor gelanina parece influir de manera directa el deseo de ingerir alimentos con un alto contenido de grasa. Recientemente una compañía desarrolló una sustancia experimental que bloquea la gelalina sin alterar el apetito por otros alimentos más saludables. Se cree que la administración diaria de este medicamento hará que la persona ingiera alimentos con menos grasa, lo que promoverá la pérdida de peso. Se diseña un experimento para probar el efecto de la gelanina, para lo cual se elige de manera aleatoria a 15 mujeres obesas y se les administra el medicamento experimental durante 6 meses. Se registra el peso inicial y final durante el período del experimento

29 Cuál es la hipótesis alternativa? Cuál es la hipótesis nula? Suponga que los datos se distribuyen normalmente Cuál es su conclusión del experimento sí emplea un alfa de 0.05 No sujetoPeso inicialPeso final

30 Ejercicio Grupos dependientes No sujetoPeso inicialPeso final D diferencia D2D

31 Grupos dependientes Se desea determinar sí el desempeño de un estudiante es en español, en promedio, diferente a su desempeño en historia en el mismo semestre. Considerando un alfa de 0.01 y que los datos se distribuyen normalmente, podría considerarse que el desempeño promedio en español es el mismo que el desempeño en historia? Formule la hipótesis nula y la alternativa. Cuáles son sus conclusiones? EspañolHistoria total

32 Ejercicio por resolverEjercicio por resolver. Se compara si el desempeño de un estudiante es en promedio diferente al su desempeño en historia. Considere una alfa de 0.02 para evaluar si existe diferencia entre el desempeño en español e historia? EspañolHistoriaDiferenciaCuadrado de la diferencia total11407

33 Ejercicio grupos dependientes Como la tensión muscular en la región de la cabeza se ha asociado con los dolores de cabeza, usted razona que si la tensión muscular disminuye, los dolores de cabeza disminuirán. Usted diseña un experimento que emplea una técnica de relajación para reducir la tensión muscular y por consecuencia los dolores de cabeza. Para ello selecciona nueve sujetos, a los cuales se les mide la frecuencia de dolores de cabeza que sufren durante un período de dos semanas y posteriormente se les vuelve a mediar la frecuencia de los dolores de cabeza una vez que han recibido el tratamiento de relajación Empleando un alfa de 0.05 y considerando que los datos se distribuyen normalmente cuáles serían sus conclusiones de acuerdo a sus planteamientos de Hipótesis un la y Hipótesis alternativa.

34 sujetoDolores de cabeza Antes del tratamiento Dolores de cabeza Después del tratamiento

35 Una propaganda de un producto asegura que si se toma diariamente y por un mes, se obtendrá una pérdida de peso de 2 kg; por ello el Instituto del Consumidor verifica si la información es cierta, por lo que realiza un estudio en 12 personas que se prestaron voluntariamente. Si emplea un alfa de 0.05, ¿ cuáles serían sus conclusiones ? Los datos se presentan en la siguiente tabla.

36 sujetoX1 antesX2 después

37

38 En cada condición se emplea un nivel diferente de la variable independiente En la prueba para grupos independientes se calcula la media de cada muestra y luego se analiza la diferencia entre esas dos medias muestrales para ver si el azar, por sí solo, es una explicación razonables de la diferencia observada entre ambas medias (1)

39 Para datos que siguen una distribución normal

40 Grupos independientes Dos muestras son independientes si las observaciones de una muestra no están relacionadas en ninguna forma con las observaciones de la otra. Los sujetos son escogidos aleatoriamente a partir de una población se les asigna una condición, también de manera aleatoria, ya sea la de experimental ó la condición de control Los sujetos de cada grupo son sometidos a una prueba solo una vez son dos grupos diferentes,. Uno grupo de control y un grupo de experimentación

41 Grupos independientes Son grupos de individuos están sometidos a diferentes condiciones, las parejas comparten características comunes estandarizadas de manera específica. Se considera que la variación debido a factores como edad, estado nutricional, coeficiente intelectual, etc., son consideradas insignificantes y que no influyen en los resultados

42 Grupos independientes Consideramos el hecho de que la modificación de la variable independiente va afectar la media de las distribuciones de los dos grupos de manera diferente. Pero también se considerará que dicha modificación no afectara la desviación estándar ni la varianza, por lo que vamos a asumir que las varianzas de los dos grupos son iguales. No se puede formar parejas de datos entre las dos condiciones, por lo que emplearemos un estadístico para cada grupo y después se evaluará las diferencias entre las medias muestrales para determinar si el azar puede darnos una explicación de las mismas

43 Grupos independientes Supuestos para la prueba t para grupos independientes Las dos muestra son independientes Ambas muestras son aleatorias simples Existe homogeneidad de la varianza, esto es, supone que la variable independiente afecta a las medias de las poblaciones, pero no a sus desviaciones estándar. Si no se cumple la normalidad y/o la homogeneidad se puede emplear una prueba alternativa como la de U Mann-Whitney

44 Muestras independientes estadístico t En este caso se considera que la hipótesis nula determina que no existe ninguna diferencia entre las dos diferentes medias de los grupos evaluados La hipótesis alternativa determina que sí existe diferencia entre las dos diferentes medias El estadístico de prueba T deberá compararse con el valor crítico de t para el nivel de significancia y para n 1 +n para los grados de libertad.

45 Si n1 n2 X1 media es la media de los datos del grupo 1 X2 media es la media de los datos del grupo 2 Si n1 = n2 Para ambos casos Gl = N-2 = n1 +n2 -2

46 La prueba t es relativamente insensible a la violación de los supuestos matemáticos subyacentes. Por lo tanto es relativamente insensible a la violación de la normalidad y la homogeneidad de la varianza Si n 1 = n 2 Ý si el tamaño de cada muestra es igual o mayor a 30, entonces podemos emplear la prueba t para grupos independientes, sin un error apreciable, a pesar de que sean infringidos de manera moderada los supuestos de normalidad y homogeneidad

47 Estimación de la variabilidad total de Y que es atribuible a X Para ello podemos emplear el valor de omega ώ 2 = t 2 obt - 1 t 2 obt + N- 1 donde N = n 1 + n 2

48

49 Ejercicio resuelto Grupos Independientes Un psicólogo desea determinar si la capacidad de la memoria inmediata resulta afectada por la falta de sueño. A un primer grupo se les priva del sueño por 24 horas y a un segundo grupo se le permite dormir normalmente. A ambos se les somete posteriormente a un examen, que consiste en presentarle diapositivas en periodos breves, después de lo cual deben de recordar la mayor cantidad posible de imágenes ( los datos se presentan en la siguiente tabla). Empleando un alfa de 0.05 y considerando que los datos se distribuyen normalmente, puede concluir que la falta de sueño afecta la capacidad de memoria inmediata? Cuál es su Hipótesis nula y su hipótesis alternativa Cuáles son sus conclusiones?

50 Se priva del sueñoDuermen normalmente X1X

51 Se priva del sueñoDuermen normalmente X1X1 2 X2X T X1 media= X2 media=

52 Ejercicio independientes Una psicóloga clínica piensa que la depresión puede afectar el sueño. Entonces decide verificarlo mediante la realización de un experimento. Para ello verifica el promedio de horas por día que duerme un grupo que padece de depresión ( que fueron seleccionadas al azar) y también selecciona al azar a unas personas de otro grupo que no presenta depresión. Las observaciones de las horas dormidas fueron hechas en un intervalo de una semana. Considerando una alfa de 0.05 y que los datos se distribuyen normalmente, plantee su Ho y su Ha para verificar las afirmaciones de la psicóloga. DeprimidosControl normal

53 HORAS DE SUEÑO PACIENTES DEPRIMIDOSCONTROL X 1 X 2 1 X 2 X SUMATORIAS MEDIAS7.55

54 Ejercicio independientes Un psicólogo cognoscitivo sospecha que el recuerdo de imágenes es superior al recuerdo de sustantivos. Para verificarlo el psicólogo realiza un experimento donde ocho estudiantes son elegidos al azar y miran 30 diapositivas con sustantivos y elige otro grupo al azar que miran 30 diapositivas con imágenes. En ambos casos se observa cada diapositiva durante 4 segundos y se realiza una prueba de recuerdo, cuyos resultados se encuentran en la tabla siguiente. Si los datos se distribuyen normalmente: Cuál es su Ho y su Ha Considere un alfa de 0.01 para obtener sus conclusiones Imágenes recordadas grupo 1 Sustantivos recordados Grupo

55 recordar imágenes o sustantivos grupo 1grupo 2 X 1 X 2 1 X 2 X

56 Un psicólogo quiere determinar si el ingreso temprano a la escuela podría afectar el CI. Para ello, consigue la ayuda de los padres de 12 parejas de gemelos idénticos en edad preescolar. Un miembro de cada pareja de gemelos entra a preescolar y allí pasa 2 años, mientras que el otro miembro de la pareja permanece en casa. Al cabo de los 2 años, se mide el CI de todos los niños y así se obtienen los datos en la siguiente tabla. Podría concluir que el ingreso temprano afecta el CI?. Utilice un alfa de 0.05 como nivel de significancia y considere que los datos se distribuyen normalmente. Gemelo en escuela Gemelo en casa

57 TAREAS

58 Tarea Se desea determinar si una clase de 16 estudiantes pueden desempeñarse igualmente bien en un examen de español, y posteriormente en un examen de como matemáticas. Pruebe la hipótesis de que la puntuación media de la población en español es la misma que en matemáticas para una alfa de 0.05 Considere que los datos se distribuyen normalmente EstudianteespañolMatemáticas

59 Un investigador está interesado en el efecto producido por el ruido en la coordinación entre el pulso y la vista de los cirujanos durante sus operaciones. El investigador decide realizar una prueba estándar de coordinación entre el pulso y la vista a nueve cirujanos, sometiéndolos a una prueba de coordinación primero en ausencia de ruido y posteriormente en presencia de ruido CirujanoSilencioRuido El investigador se ha planteado la hipótesis de que la coordinación de los cirujanos es mayor en condiciones de silencio. Considere un alfa de 0.01 Cuáles son sus conclusiones si considera que los datos se distribuyen normalmente?

60 Un psicólogo especializado en desarrollo está estudiando la sensibilidad de los niños frente a extraños, utilizando un nuevo tipo de medida. El considera que la sensibilidad hacia los extraños es menor a la edad de 4 meses que a la edad de 3 meses. Para probar su afirmación elige al azar a un grupo de 10 niños, los cuales son evaluados en el aspecto de la sensibilidad a los tres meses. Un mes después ( a los cuatro meses) se vuelven a evaluar en el aspecto de la sensibilidad.Los datos de los resultados en las pruebas de sensibilidad se muestran en la tabla anterior. Si considera un alfa de 0.05 y que los datos se distribuyen normalmente, cuáles son sus conclusiones? 4 meses3 meses

61 Estudios en psicología afirman que las mujeres parecen estar más interesadas en las emociones que los hombres. Una investigadora decide llevar a cabo un experimento con 10 mujeres y 10 hombres. A todos ellos se les mostraron 20 fotografías con alto contenido emocional, después de lo cual se les pidió que las recordaran al cabo de una semana de habérselas presentado. Los datos de los resultados se muestran en la siguiente tabla ( considere que los datos se distribuyen normalmente) A.-Considerando un alfa de 0.05 y de acuerdo a su planteamiento de hipótesis nula y hipótesis alternativa, considera que las mujeres presentan mayor interés que los hombres? HombresMujeres

62 EMOCIONES HOMBRESMUJERES

63 Una investigación en materia ecológica está tratando de demostrar el efecto causado por una fundición de plomo sobre el nivel de éste en la sangre de los niños que viven cerca de esa fábrica. Se eligen al azar 10 niños, de entre todos lo que viven cerca de la fundición. Al mismo tiempo se escoge al azar un grupo de comparación de 7 niños que viven en un área libre de contaminación. Se extrajeron muestras de sangre de los niños de ambos grupos y los niveles de plomo ( en microgramos por 100 ml) se presentan en la siguiente tabla. Se pretende probar que el vivir cerca de la zona de la fundición aumenta el nivel de plomo en la sangre Si emplea un alfa de 0.01 y normalidad en la distribución de los datos, cuál es la conclusión que usted puede ofrecer ? Niños que viven cerca de la fundición Niños que viven en un área libre de contaminació n

64 Un profesor de física cree que la iluminación natural en las aulas puede mejorar el aprendizaje de los estudiantes. Entonces realiza un experimento en el que imparte la misma unidad de física a dos grupos de siete estudiantes cada uno. Si consideramos que todos los detalles son similares en los dos grupos a excepción de que en un aula se emplea luz natural y en el otro grupo se emplea luz artificial. Considere que lo que se quiere probar es que la luz natural incide en el mejoramiento de los resultados. Usando un alfa de 0.05 y de acuerdo a sus planteamientos de Ho y de Ha, cuáles son sus conclusiones? Considere que los datos se distribuyen norlmante Luz naturalLuz artificial

65 EFECTO DE LA LUZ NATURAL NATURALARTIFICIAL

66 PRUEBA A SANDLER Este método es alternativo a la prueba t student para muestras correlacionadas D= x1- x2 diferencia en e puntaje del grupo 1 y del grupo 2


Descargar ppt "T student para muestras simples JUAN JOSÉ HERNÁNDEZ OCAÑA 1.-Si no se conoce la varianza de la población 2.- Si los datos siguen una distribución normal."

Presentaciones similares


Anuncios Google