La descarga está en progreso. Por favor, espere

La descarga está en progreso. Por favor, espere

MATEMÁTICAS 3.º ESO Unidad 5: Sistemas de ecuaciones INICIOESQUEMA INTERNETACTIVIDAD 5 Sistemas de ecuaciones Las intersecciones de dos autopistas plantean.

Presentaciones similares


Presentación del tema: "MATEMÁTICAS 3.º ESO Unidad 5: Sistemas de ecuaciones INICIOESQUEMA INTERNETACTIVIDAD 5 Sistemas de ecuaciones Las intersecciones de dos autopistas plantean."— Transcripción de la presentación:

1 MATEMÁTICAS 3.º ESO Unidad 5: Sistemas de ecuaciones INICIOESQUEMA INTERNETACTIVIDAD 5 Sistemas de ecuaciones Las intersecciones de dos autopistas plantean un problema a resolver para establecer todas las conexiones posibles. De modo análogo, la intersección de dos rectas supone la resolución de un sistema de ecuaciones. INTERNET LECTURA INICIAL ESQUEMA ACTIVIDAD SALIR

2 MATEMÁTICAS 3.º ESO Unidad 5: Sistemas de ecuaciones INICIOESQUEMA INTERNETACTIVIDAD Brahmagupta y la matemática india Enlace a la obra de Brahmagupta Enlace al Lilavati de Baskhara ANTERIOR SALIR

3 MATEMÁTICAS 3.º ESO Unidad 5: Sistemas de ecuaciones INICIOESQUEMA INTERNETACTIVIDAD Esquema de contenidos Sistemas de ecuaciones Ecuaciones lineales Concepto Sistemas de ecuaciones lineales S. compatibles e incompatibles S. determinados e indeterminados Resolución gráfica Determinación del número de soluciones Resolución de problemas Traducción algebraica Problemas con cambios temporales Métodos de resolución Método de sustitución Método de reducción Método de igualación ANTERIOR SALIR

4 MATEMÁTICAS 3.º ESO Unidad 5: Sistemas de ecuaciones INICIOESQUEMA INTERNETACTIVIDAD Resolver un problema es ir contestando a varias cuestiones que tienen diversas posibilidades. En el siguiente problema, vas a tener que elegir entre diversas opciones. Ayer tomamos 3 bocadillos y 4 refrescos y hemos pagado 13,60. Hoy hemos tomado 2 bocadillos y 5 refrescos y hemos pagado 12,80. ¿Cuál es el precio de cada bocadillo y de cada refresco? 1.ª Cuestión: Las incógnitas del problema son: (ELIGE UNA OPCIÓN) A) Los tipos de productos que piden; B) Los precios de cada tipo de producto; C) El importe acumulado de las dos consumiciones. La respuesta correcta es: SIGUIENTE Sistemas de ecuaciones lineales ANTERIOR SALIR

5 MATEMÁTICAS 3.º ESO Unidad 5: Sistemas de ecuaciones INICIOESQUEMA INTERNETACTIVIDAD Resolver un problema es ir contestando a varias cuestiones que tienen diversas posibilidades. En el siguiente problema, vas a tener que elegir entre diversas opciones. Ayer tomamos 3 bocadillos y 4 refrescos y hemos pagado 13,60. Hoy hemos tomado 2 bocadillos y 5 refrescos y hemos pagado 12,80. ¿Cuál es el precio de cada bocadillo y de cada refresco? 1.ª Cuestión: Las incógnitas del problema son: (ELIGE UNA OPCIÓN) A) Los tipos de productos que piden; B) Los precios de cada tipo de producto; C) El importe acumulado de las dos consumiciones. La respuesta correcta es: B) Los precios de cada tipo de producto. SIGUIENTE Sistemas de ecuaciones lineales ANTERIOR SALIR

6 MATEMÁTICAS 3.º ESO Unidad 5: Sistemas de ecuaciones INICIOESQUEMA INTERNETACTIVIDAD Resolver un problema es ir contestando a varias cuestiones que tienen diversas posibilidades. En el siguiente problema, vas a tener que elegir entre diversas opciones. Ayer tomamos 3 bocadillos y 4 refrescos y hemos pagado 13,60. Hoy hemos tomado 2 bocadillos y 5 refrescos y hemos pagado 12,80. ¿Cuál es el precio de cada bocadillo y de cada refresco? 1.ª Cuestión: Las incógnitas del problema son: Los precios de cada tipo de producto. x, precio de un bocadillo; y, precio de un refresco. 2.ª Cuestión: ¿Qué ecuación expresa el gasto del primer día?: (ELIGE UNA OPCIÓN) A) 2 x + 5 y = 13,80; B) 3 x + 2 y = 12,80 ; C) 3 x + 4 y = 13,60 La respuesta correcta es: SIGUIENTE Sistemas de ecuaciones lineales ANTERIOR SALIR

7 MATEMÁTICAS 3.º ESO Unidad 5: Sistemas de ecuaciones INICIOESQUEMA INTERNETACTIVIDAD Resolver un problema es ir contestando a varias cuestiones que tienen diversas posibilidades. En el siguiente problema, vas a tener que elegir entre diversas opciones. Ayer tomamos 3 bocadillos y 4 refrescos y hemos pagado 13,60. Hoy hemos tomado 2 bocadillos y 5 refrescos y hemos pagado 12,80. ¿Cuál es el precio de cada bocadillo y de cada refresco? 1.ª Cuestión: Las incógnitas del problema son: Los precios de cada tipo de producto. x, precio de un bocadillo; y, precio de un refresco. 2.ª Cuestión: ¿Qué ecuación expresa el gasto del primer día?: (ELIGE UNA OPCIÓN) A) 2 x + 5 y = 13,80; B) 3 x + 2 y = 12,80 ; C) 3 x + 4 y = 13,60 La respuesta correcta es: 3 x + 4 y = 13,60 SIGUIENTE Sistemas de ecuaciones lineales ANTERIOR SALIR

8 MATEMÁTICAS 3.º ESO Unidad 5: Sistemas de ecuaciones INICIOESQUEMA INTERNETACTIVIDAD Resolver un problema es ir contestando a varias cuestiones que tienen diversas posibilidades. En el siguiente problema, vas a tener que elegir entre diversas opciones. Ayer tomamos 3 bocadillos y 4 refrescos y hemos pagado 13,60. Hoy hemos tomado 2 bocadillos y 5 refrescos y hemos pagado 12,80. ¿Cuál es el precio de cada bocadillo y de cada refresco? 1.ª Cuestión: Las incógnitas del problema son: Los precios de cada tipo de producto. x, precio de un bocadillo; y, precio de un refresco. 2.ª Cuestión: ¿Qué ecuación expresa el gasto del primer día?: 3 x + 4 y = 13,60 La respuesta correcta es: 3.ª Cuestión: ¿Qué ecuación da el gasto del segundo día?: (ELIGE UNA OPCIÓN) A) 2 x + 3 y = 13,80; B) 3 x + 5 y = 12,80 ; C) 2 x + 5 y = 12,80 SIGUIENTE Sistemas de ecuaciones lineales ANTERIOR SALIR

9 MATEMÁTICAS 3.º ESO Unidad 5: Sistemas de ecuaciones INICIOESQUEMA INTERNETACTIVIDAD Resolver un problema es ir contestando a varias cuestiones que tienen diversas posibilidades. En el siguiente problema, vas a tener que elegir entre diversas opciones. Ayer tomamos 3 bocadillos y 4 refrescos y hemos pagado 13,60. Hoy hemos tomado 2 bocadillos y 5 refrescos y hemos pagado 12,80. ¿Cuál es el precio de cada bocadillo y de cada refresco? 1.ª Cuestión: Las incógnitas del problema son: Los precios de cada tipo de producto. x, precio de un bocadillo; y, precio de un refresco. 2.ª Cuestión: ¿Qué ecuación expresa el gasto del primer día?: 3 x + 4 y = 13,60 La respuesta correcta es: C) 2 x + 5 y = 12,80 3.ª Cuestión: ¿Qué ecuación da el gasto del segundo día?: (ELIGE UNA OPCIÓN) A) 2 x + 3 y = 13,80; B) 3 x + 5 y = 12,80 ; C) 2 x + 5 y = 12,80 SIGUIENTE Sistemas de ecuaciones lineales ANTERIOR SALIR

10 MATEMÁTICAS 3.º ESO Unidad 5: Sistemas de ecuaciones INICIOESQUEMA INTERNETACTIVIDAD Resolver un problema es ir contestando a varias cuestiones que tienen diversas posibilidades. En el siguiente problema, vas a tener que elegir entre diversas opciones. Ayer tomamos 3 bocadillos y 4 refrescos y hemos pagado 13,60. Hoy hemos tomado 2 bocadillos y 5 refrescos y hemos pagado 12,80. ¿Cuál es el precio de cada bocadillo y de cada refresco? 1.ª Cuestión: Las incógnitas del problema son: Los precios de cada tipo de producto. x, precio de un bocadillo; y, precio de un refresco. 2.ª Cuestión: ¿Qué ecuación expresa el gasto del primer día?: 3 x + 4 y = 13,60 3.ª Cuestión: ¿Qué ecuación da el gasto del segundo día?: 2 x + 5 y = 12,80 SIGUIENTE Sistemas de ecuaciones lineales ANTERIOR SALIR

11 MATEMÁTICAS 3.º ESO Unidad 5: Sistemas de ecuaciones INICIOESQUEMA INTERNETACTIVIDAD Resolver un problema es ir contestando a varias cuestiones que tienen diversas posibilidades. En el siguiente problema, vas a tener que elegir entre diversas opciones. Ayer tomamos 3 bocadillos y 4 refrescos y hemos pagado 13,60. Hoy hemos tomado 2 bocadillos y 5 refrescos y hemos pagado 12,80. ¿Cuál es el precio de cada bocadillo y de cada refresco? Hemos de resolver el sistema de ecuaciones: 3 x + 4 y = 13,60 2 x + 5 y = 12,80 ¿Qué método de resolución es el más apropiado? SIGUIENTE Sistemas de ecuaciones lineales ANTERIOR SALIR

12 MATEMÁTICAS 3.º ESO Unidad 5: Sistemas de ecuaciones INICIOESQUEMA INTERNETACTIVIDAD Resolver un problema es ir contestando a varias cuestiones que tienen diversas posibilidades. En el siguiente problema, vas a tener que elegir entre diversas opciones. Ayer tomamos 3 bocadillos y 4 refrescos y hemos pagado 13,60. Hoy hemos tomado 2 bocadillos y 5 refrescos y hemos pagado 12,80. ¿Cuál es el precio de cada bocadillo y de cada refresco? Hemos de resolver el sistema de ecuaciones: 3 x + 4 y = 13,60 2 x + 5 y = 12,80 Puesto que no hay ninguna incógnita con coeficiente 1 ó –1, el método de reducción es el más apropiado. SIGUIENTE Sistemas de ecuaciones lineales ANTERIOR SALIR

13 MATEMÁTICAS 3.º ESO Unidad 5: Sistemas de ecuaciones INICIOESQUEMA INTERNETACTIVIDAD Resolver un problema es ir contestando a varias cuestiones que tienen diversas posibilidades. En el siguiente problema, vas a tener que elegir entre diversas opciones. Ayer tomamos 3 bocadillos y 4 refrescos y hemos pagado 13,60. Hoy hemos tomado 2 bocadillos y 5 refrescos y hemos pagado 12,80. ¿Cuál es el precio de cada bocadillo y de cada refresco? Hemos de resolver el sistema de ecuaciones: 3 x + 4 y = 13,60 2 x + 5 y = 12,80 Puesto que no hay ninguna incógnita con coeficiente 1 ó –1, el método de reducción es el más apropiado. Multiplicamos la primera ecuación por 2 y la segunda por 3 y restamos las dos ecuaciones: SIGUIENTE Sistemas de ecuaciones lineales ANTERIOR SALIR

14 MATEMÁTICAS 3.º ESO Unidad 5: Sistemas de ecuaciones INICIOESQUEMA INTERNETACTIVIDAD Resolver un problema es ir contestando a varias cuestiones que tienen diversas posibilidades. En el siguiente problema, vas a tener que elegir entre diversas opciones. Ayer tomamos 3 bocadillos y 4 refrescos y hemos pagado 13,60. Hoy hemos tomado 2 bocadillos y 5 refrescos y hemos pagado 12,80. ¿Cuál es el precio de cada bocadillo y de cada refresco? Hemos de resolver el sistema de ecuaciones: 3 x + 4 y = 13,60 2 x + 5 y = 12,80 Multiplicamos la primera ecuación por 2 y la segunda por 3 y restamos las dos ecuaciones: 6 x + 8 y = 27,20 6 x + 15 y = 38,40 SIGUIENTE Sistemas de ecuaciones lineales ANTERIOR SALIR

15 MATEMÁTICAS 3.º ESO Unidad 5: Sistemas de ecuaciones INICIOESQUEMA INTERNETACTIVIDAD Resolver un problema es ir contestando a varias cuestiones que tienen diversas posibilidades. En el siguiente problema, vas a tener que elegir entre diversas opciones. Ayer tomamos 3 bocadillos y 4 refrescos y hemos pagado 13,60. Hoy hemos tomado 2 bocadillos y 5 refrescos y hemos pagado 12,80. ¿Cuál es el precio de cada bocadillo y de cada refresco? Hemos de resolver el sistema de ecuaciones: 3 x + 4 y = 13,60 2 x + 5 y = 12,80 Multiplicamos la primera ecuación por 2 y la segunda por 3 y restamos las dos ecuaciones: 6 x + 8 y = 27,20 6 x + 15 y = 38,40 7 y = 11,20 y = 11,20 / 7 = 1,60 SIGUIENTE Sistemas de ecuaciones lineales ANTERIOR SALIR

16 MATEMÁTICAS 3.º ESO Unidad 5: Sistemas de ecuaciones INICIOESQUEMA INTERNETACTIVIDAD Resolver un problema es ir contestando a varias cuestiones que tienen diversas posibilidades. En el siguiente problema, vas a tener que elegir entre diversas opciones. Ayer tomamos 3 bocadillos y 4 refrescos y hemos pagado 13,60. Hoy hemos tomado 2 bocadillos y 5 refrescos y hemos pagado 12,80. ¿Cuál es el precio de cada bocadillo y de cada refresco? Hemos de resolver el sistema de ecuaciones: 3 x + 4 y = 13,60 2 x + 5 y = 12,80 Sustituyendo el valor de y = 1,60 en la 1.ª ecuación: 3 x + 4 · 1,60 = 13,60 SIGUIENTE Sistemas de ecuaciones lineales ANTERIOR SALIR

17 MATEMÁTICAS 3.º ESO Unidad 5: Sistemas de ecuaciones INICIOESQUEMA INTERNETACTIVIDAD Sistemas de ecuaciones lineales Resolver un problema es ir contestando a varias cuestiones que tienen diversas posibilidades. En el siguiente problema, vas a tener que elegir entre diversas opciones. Ayer tomamos 3 bocadillos y 4 refrescos y hemos pagado 13,60. Hoy hemos tomado 2 bocadillos y 5 refrescos y hemos pagado 12,80. ¿Cuál es el precio de cada bocadillo y de cada refresco? Hemos de resolver el sistema de ecuaciones: 3 x + 4 y = 13,60 2 x + 5 y = 12,80 Sustituyendo el valor de y = 1,60 en la 1.ª ecuación: 3 x + 4 · 1,60 = 13,60 3 x + 6,40 = 13,603 x = 7,20x = 7,20 / 3 = 2,40 Por tanto, un bocadillo cuesta 2,40 y un refresco, 1,60. ANTERIOR SALIR

18 MATEMÁTICAS 3.º ESO Unidad 5: Sistemas de ecuaciones INICIOESQUEMA INTERNETACTIVIDAD Traducción algebraica del enunciado Vamos a resolver el problema número 92 de la sección En la vida cotidiana de de tu libro de texto, que trata sobre la facturación de equipajes en un aeropuerto, por parte de dos amigas Alicia y Marien que llevan 18 y 27 kg de equipaje, respectivamente. La situación se refleja en dos escenas: SIGUIENTE ANTERIOR SALIR

19 MATEMÁTICAS 3.º ESO Unidad 5: Sistemas de ecuaciones INICIOESQUEMA INTERNETACTIVIDAD Traducción algebraica del enunciado Vamos a resolver el problema número 92 de la sección En la vida cotidiana de la página 112 de tu libro de texto, que trata sobre la facturación de equipajes en un aeropuerto, por parte de dos amigas Alicia y Marien que llevan 18 y 27 kg de equipaje, respectivamente. Las frases significativas del enunciado son las siguientes: - Un equipaje de 18 kg no paga por sobrepeso. - El equipaje de 27 kg de Marien paga 42 por sobrepeso. - Si reunimos los dos equipajes, Marien sólo pagaría 30 por sobrepeso. Se pregunta: ¿Cuál es el peso permitido a cada pasajero que no paga nada por sobrepeso? ¿Cuánto hay que pagar por cada kilogramo de sobrepeso? Lee atentamente la información del enunciado y selecciona las incógnitas. SIGUIENTE ANTERIOR SALIR

20 MATEMÁTICAS 3.º ESO Unidad 5: Sistemas de ecuaciones INICIOESQUEMA INTERNETACTIVIDAD Traducción algebraica del enunciado Vamos a resolver el problema número 92 de la sección En la vida cotidiana de la página 112 de tu libro de texto, que trata sobre la facturación de equipajes en un aeropuerto, por parte de dos amigas Alicia y Marien que llevan 18 y 27 kg de equipaje, respectivamente. Las frases significativas del enunciado son las siguientes: - Un equipaje de 18 kg no paga por sobrepeso. - El equipaje de 27 kg de Marien paga 42 por sobrepeso. - Si reunimos los dos equipajes, Marien sólo pagaría 30 por sobrepeso. Se pregunta: ¿Cuál es el peso permitido a cada pasajero que no paga nada por sobrepeso? ¿Cuánto hay que pagar por cada kilogramo de sobrepeso? Las dos preguntas del enunciado sugieren las dos incógnitas: x, peso permitido a cada pasajero sin pagar nada por sobrepeso; y, importe que hay que pagar por kilogramo de sobrepeso. ¿Te atreves ya a traducir el enunciado a ecuaciones? SIGUIENTE ANTERIOR SALIR

21 MATEMÁTICAS 3.º ESO Unidad 5: Sistemas de ecuaciones INICIOESQUEMA INTERNETACTIVIDAD Traducción algebraica del enunciado Las frases significativas del enunciado son las siguientes: - Un equipaje de 18 kg no paga por sobrepeso. - El equipaje de 27 kg de Marien paga 42 por sobrepeso. - Si reunimos los dos equipajes, Marien sólo pagaría 30 por sobrepeso. Se pregunta: ¿Cuál es el peso permitido a cada pasajero que no paga nada por sobrepeso? ¿Cuánto hay que pagar por cada kilogramo de sobrepeso? Las dos preguntas del enunciado sugieren las dos incógnitas: x, peso permitido a cada pasajero sin pagar nada por sobrepeso; y, importe que hay que pagar por kilogramo de sobrepeso. La primera frase del enunciado no nos proporciona ninguna ecuación: sólo nos dice que x es más de 18. La segunda dice que el sobrepeso de Marien, (27 – x), paga 42. Como se paga y euros por cada kilogramo, se tiene la ecuación: (27 – x ) y = 42 SIGUIENTE ANTERIOR SALIR

22 MATEMÁTICAS 3.º ESO Unidad 5: Sistemas de ecuaciones INICIOESQUEMA INTERNETACTIVIDAD Traducción algebraica del enunciado Las frases significativas del enunciado son las siguientes: - Un equipaje de 18 kg no paga por sobrepeso. - El equipaje de 27 kg de Marien paga 42 por sobrepeso. - Si reunimos los dos equipajes, Marien sólo pagaría 30 por sobrepeso. Se pregunta: ¿Cuál es el peso permitido a cada pasajero que no paga nada por sobrepeso? ¿Cuánto hay que pagar por cada kilogramo de sobrepeso? Las dos preguntas del enunciado sugieren las dos incógnitas: x, peso permitido a cada pasajero sin pagar nada por sobrepeso; y, importe que hay que pagar por kilogramo de sobrepeso. La segunda dice que el sobrepeso de Marien, (27 – x), paga 42. Como se paga y euros por cada kilogramo, se tiene la ecuación: (27 – x ) y = 42 Marien le pasa a Alicia todo el peso que puede ésta admitir sin pagar nada, (x – 18), lo que proporciona un ahorro de 12 en su facturación: (x – 18 ) y = 12 SIGUIENTE ANTERIOR SALIR

23 MATEMÁTICAS 3.º ESO Unidad 5: Sistemas de ecuaciones INICIOESQUEMA INTERNETACTIVIDAD Traducción algebraica del enunciado Las frases significativas del enunciado son las siguientes: - Un equipaje de 18 kg no paga por sobrepeso. - El equipaje de 27 kg de Marien paga 42 por sobrepeso. - Si reunimos los dos equipajes, Marien sólo pagaría 30 por sobrepeso. Se pregunta: ¿Cuál es el peso permitido a cada pasajero que no paga nada por sobrepeso? ¿Cuánto hay que pagar por cada kilogramo de sobrepeso? Las dos preguntas del enunciado sugieren las dos incógnitas: x, peso permitido a cada pasajero sin pagar nada por sobrepeso; y, importe que hay que pagar por kilogramo de sobrepeso. (27 – x ) y = 42 (x – 18 ) y = 12 Hay que resolver el sistema: SIGUIENTE ANTERIOR SALIR

24 MATEMÁTICAS 3.º ESO Unidad 5: Sistemas de ecuaciones INICIOESQUEMA INTERNETACTIVIDAD Traducción algebraica del enunciado Las frases significativas del enunciado son las siguientes: - Un equipaje de 18 kg no paga por sobrepeso. - El equipaje de 27 kg de Marien paga 42 por sobrepeso. - Si reunimos los dos equipajes, Marien sólo pagaría 30 por sobrepeso. Se pregunta: ¿Cuál es el peso permitido a cada pasajero que no paga nada por sobrepeso? ¿Cuánto hay que pagar por cada kilogramo de sobrepeso? Las dos preguntas del enunciado sugieren las dos incógnitas: x, peso permitido a cada pasajero sin pagar nada por sobrepeso; y, importe que hay que pagar por kilogramo de sobrepeso. (27 – x ) y = 42 (x – 18 ) y = 12 Hay que resolver el sistema: Es un sistema que no es lineal. Puedes resolverlo, por igualación, despejando en cada ecuación la incógnita y: SIGUIENTE ANTERIOR SALIR

25 MATEMÁTICAS 3.º ESO Unidad 5: Sistemas de ecuaciones INICIOESQUEMA INTERNETACTIVIDAD Traducción algebraica del enunciado Las frases significativas del enunciado son las siguientes: - Un equipaje de 18 kg no paga por sobrepeso. - El equipaje de 27 kg de Marien paga 42 por sobrepeso. - Si reunimos los dos equipajes, Marien sólo pagaría 30 por sobrepeso. Se pregunta: ¿Cuál es el peso permitido a cada pasajero que no paga nada por sobrepeso? ¿Cuánto hay que pagar por cada kilogramo de sobrepeso? (27 – x ) y = 42 (x – 18 ) y = 12 Hay que resolver el sistema: Es un sistema que no es lineal. Puedes resolverlo, por igualación, despejando en cada ecuación la incógnita y: Has de simplificar, pues, la ecuación: SIGUIENTE ANTERIOR SALIR

26 MATEMÁTICAS 3.º ESO Unidad 5: Sistemas de ecuaciones INICIOESQUEMA INTERNETACTIVIDAD Traducción algebraica del enunciado Las frases significativas del enunciado son las siguientes: - Un equipaje de 18 kg no paga por sobrepeso. - El equipaje de 27 kg de Marien paga 42 por sobrepeso. - Si reunimos los dos equipajes, Marien sólo pagaría 30 por sobrepeso. Se pregunta: ¿Cuál es el peso permitido a cada pasajero que no paga nada por sobrepeso? ¿Cuánto hay que pagar por cada kilogramo de sobrepeso? (27 – x ) y = 42 (x – 18 ) y = 12 Hay que resolver el sistema: Has de simplificar, pues, la ecuación: o, lo que es lo mismo: 42 (x – 18) = 12 (27 – x) 42 x – 756 = 324 – 12 x, SIGUIENTE ANTERIOR SALIR

27 MATEMÁTICAS 3.º ESO Unidad 5: Sistemas de ecuaciones INICIOESQUEMA INTERNETACTIVIDAD Traducción algebraica del enunciado Las frases significativas del enunciado son las siguientes: - Un equipaje de 18 kg no paga por sobrepeso. - El equipaje de 27 kg de Marien paga 42 por sobrepeso. - Si reunimos los dos equipajes, Marien sólo pagaría 30 por sobrepeso. Se pregunta: ¿Cuál es el peso permitido a cada pasajero que no paga nada por sobrepeso? ¿Cuánto hay que pagar por cada kilogramo de sobrepeso? (27 – x ) y = 42 (x – 18 ) y = 12 Hay que resolver el sistema: Has de simplificar, pues, la ecuación: o, lo que es lo mismo: 42 (x – 18) = 12 (27 – x) 42 x – 756 = 324 – 12 x Finalmente: 42 x + 12 x = De aquí: 54 x = 1080 x = 1080 / 54 = 20, El peso permitido a cada viajero es de 20 kg. El coste de cada kilogramo de sobrepeso es 6. ANTERIOR SALIR

28 MATEMÁTICAS 3.º ESO Unidad 5: Sistemas de ecuaciones INICIOESQUEMA INTERNETACTIVIDAD Problemas con cambios temporales En algunos enunciados de problemas, hemos de traducir expresiones similares a trabalenguas. Estos enunciados se aclaran después de una lectura atenta. Víctor le dice a Rocío: Si me das un euro, tendré el doble de dinero que tú. Rocío le dice a Víctor: Si me das un euro, tendremos los dos el mismo dinero. ¿Cuánto dinero tiene cada uno? SIGUIENTE ANTERIOR SALIR

29 MATEMÁTICAS 3.º ESO Unidad 5: Sistemas de ecuaciones INICIOESQUEMA INTERNETACTIVIDAD Problemas con cambios temporales INICIOESQUEMA INTERNETACTIVIDAD SIGUIENTE En algunos enunciados de problemas, hemos de traducir expresiones similares a trabalenguas. Estos enunciados se aclaran después de una lectura atenta. Víctor le dice a Rocío: Si me das un euro, tendré el doble de dinero que tú. Rocío le dice a Víctor: Si me das un euro, tendremos los dos el mismo dinero. ¿Cuánto dinero tiene cada uno? Llamamos x al dinero de Víctor e y al dinero de Rocío. Un cuadro nos ayudará a aclarar la situación: Al comienzoDespués 1ª fraseDespués 2ª frase Dinero Víctorx Dinero Rocíoy Lee atentamente el enunciado x + 1 y – 1y + 1 x – 1 SIGUIENTE ANTERIOR SALIR

30 MATEMÁTICAS 3.º ESO Unidad 5: Sistemas de ecuaciones INICIOESQUEMA INTERNETACTIVIDAD Problemas con cambios temporales INICIOESQUEMA INTERNETACTIVIDAD SIGUIENTE En algunos enunciados de problemas, hemos de traducir expresiones similares a trabalenguas. Estos enunciados se aclaran después de una lectura atenta. Víctor le dice a Rocío: Si me das un euro, tendré el doble de dinero que tú. Rocío le dice a Víctor: Si me das un euro, tendremos los dos el mismo dinero. ¿Cuánto dinero tiene cada uno? Llamamos x al dinero de Víctor e y al dinero de Rocío. Un cuadro nos ayudará a aclarar la situación: Al comienzoDespués 1ª fraseDespués 2ª frase Dinero Víctorxx + 1x – 1 Dinero Rocíoyy – 1y + 1 La frase Si me das un euro, tendré el doble de dinero que tú que dice Víctor, se traduce por: La frase Si me das un euro, tendremos los dos el mismo dinero que dice Rocío, se traduce por: Ahora, traduce el enunciado. x + 1 = 2 (y – 1) = 2 y – 2 x – 1 = y + 1 ANTERIOR SALIR SIGUIENTE

31 MATEMÁTICAS 3.º ESO Unidad 5: Sistemas de ecuaciones INICIOESQUEMA INTERNETACTIVIDAD Problemas con cambios temporales En algunos enunciados de problemas, hemos de traducir expresiones similares a trabalenguas. Estos enunciados se aclaran después de una lectura atenta. Víctor le dice a Rocío: Si me das un euro, tendré el doble de dinero que tú. Rocío le dice a Víctor: Si me das un euro, tendremos los dos el mismo dinero. ¿Cuánto dinero tiene cada uno? Llamamos x al dinero de Víctor e y al dinero de Rocío. Un cuadro nos ayudará a aclarar la situación: Al comienzoDespués 1.ª fraseDespués 2.ª frase Dinero Víctorxx + 1x – 1 Dinero Rocíoyy – 1y + 1 Finalmente, resuelve el sistema. x + 1 = 2 y – 2 x – 1 = y + 1 Resolvemos el sistema:, es decir, x = 2 y – 3 x = y + 2 Por igualación: 2 y – 3 = y + 2, o sea, y = 5. Sustituyendo en cualquier ecuación del sistema, se obtiene x = 7. ANTERIOR SALIR

32 MATEMÁTICAS 3.º ESO Unidad 5: Sistemas de ecuaciones INICIOESQUEMA INTERNETACTIVIDAD La ecuación es como una balanza equilibrada Sam Loyd fue un matemático aficionado que elaboró una buena cantidad de actividades para el público en general. La que aparece al margen pregunta que dado que las balanzas están equilibradas en las dos primeras pesadas, ¿cuántas bolitas se necesitarán para equilibrar al trompo en la tercera pesada? Una ecuación equilibra dos expresiones matemáticas, como los dos platillos de una balanza. Si hacemos un cambio en uno de ellos, el mismo cambio hay que hacerlo en el otro para mantener el equilibrio. SIGUIENTE ANTERIOR SALIR

33 MATEMÁTICAS 3.º ESO Unidad 5: Sistemas de ecuaciones INICIOESQUEMA INTERNETACTIVIDAD La ecuación es como una balanza equilibrada ¿Cuántas bolitas se necesitarán para equilibrar al trompo en la tercera pesada? Una ecuación equilibra dos expresiones matemáticas, como los dos platillos de una balanza. Si hacemos un cambio en uno de ellos, el mismo cambio hay que hacerlo en el otro para mantener el equilibrio. Si en la primera pesada sustituimos el trompo por las piezas que lo equilibran en la segunda, tenemos la siguiente pesada: Quitaremos 8 bolitas de cada platillo: SIGUIENTE ANTERIOR SALIR

34 MATEMÁTICAS 3.º ESO Unidad 5: Sistemas de ecuaciones INICIOESQUEMA INTERNETACTIVIDAD La ecuación es como una balanza equilibrada ¿Cuántas bolitas se necesitarán para equilibrar al trompo en la tercera pesada? Una ecuación equilibra dos expresiones matemáticas, como los dos platillos de una balanza. Si hacemos un cambio en uno de ellos, el mismo cambio hay que hacerlo en el otro para mantener el equilibrio. Quitaremos 8 bolitas de cada platillo: Así, un cubo pesa lo mismo que una bolita. Y, por tanto, un trompo, que en la segunda ecuación se equilibra con un cubo y 8 bolitas, equivale a 9 bolitas. SIGUIENTE ANTERIOR SALIR

35 MATEMÁTICAS 3.º ESO Unidad 5: Sistemas de ecuaciones INICIOESQUEMA INTERNETACTIVIDAD La ecuación es como una balanza equilibrada INICIOESQUEMA INTERNETACTIVIDAD equivale a 3x + y = 12 equivale a 4x + 8 = 12 equivale a y = x + 8 4x = 4 Sustituimos el valor de y en la 1ª ecuación Simplificamos Vamos a ver como, al resolver el problema de la balanza, has resuelto un sistema de dos ecuaciones con dos incógnitas. x es el equivalente en bolitas del cubo, y, el equivalente del trompo. equivale a x = 1 Despejamos equivale a y = 9 SIGUIENTE ANTERIOR SALIR

36 MATEMÁTICAS 3.º ESO Unidad 5: Sistemas de ecuaciones INICIOESQUEMA INTERNETACTIVIDAD Enlaces de interés Enlaces comentadosRecursos de Cataluña IR A ESTA WEB ANTERIOR SALIR

37 MATEMÁTICAS 3.º ESO Unidad 5: Sistemas de ecuaciones INICIOESQUEMA INTERNETACTIVIDAD Actividad: Un solucionador de ecuaciones lineales En la Universidad de Niza (Francia) han elaborado, en español, un solucionador de ecuaciones lineales. Para conocerlo, sigue este enlace.enlace. Dirección: ule=tool%2Flinear%2Flinsolver.es ule=tool%2Flinear%2Flinsolver.es ANTERIOR SALIR


Descargar ppt "MATEMÁTICAS 3.º ESO Unidad 5: Sistemas de ecuaciones INICIOESQUEMA INTERNETACTIVIDAD 5 Sistemas de ecuaciones Las intersecciones de dos autopistas plantean."

Presentaciones similares


Anuncios Google