La descarga está en progreso. Por favor, espere

La descarga está en progreso. Por favor, espere

1 Distribución NORMAL Es la distribución más importante en probabilidad y estadística. Muchas poblaciones tienen distribución normal o pueden ajustarse.

Presentaciones similares


Presentación del tema: "1 Distribución NORMAL Es la distribución más importante en probabilidad y estadística. Muchas poblaciones tienen distribución normal o pueden ajustarse."— Transcripción de la presentación:

1 1 Distribución NORMAL Es la distribución más importante en probabilidad y estadística. Muchas poblaciones tienen distribución normal o pueden ajustarse muy bien a ella. Ejemplos: Estatura, peso y otras características físicas. Errores de medición en experimentos científicos Tiempos de reacción en experimentos psicológicos Mediciones de inteligencia y aptitud. Calificaciones en diversas pruebas. Muchas medidas e indicadores económicos. En 1835, Poisson acuñó la frase ley de los grandes números y demostró que había estabilidad estadística en cuestiones sociales.

2 2 Distribución NORMAL Se dice que una va X continua tiene una distribución normal con parámetros y (ó y 2 ) si su fdp es:

3 3 Distribución NORMAL

4 4 Probabilidad de que una variable aleatoria normal se encuentre entre a y b:

5 5 Distribución NORMAL ESTÁNDAR La distribución normal con parámetros = 0 y = 1 recibe el nombre de distribución normal estándar. La variable aleatoria normal estándar se denota por Z y su fdp es: Su función de probabilidad acumulada se denota por:

6 6 Distribución NORMAL ESTÁNDAR Uso de tablas Si Z es una variable aleatoria Normal Estándar, determine: a)P(Z < 1.5) b)el valor de z tal que P(Z > z) = c)P(-2.33 < Z < 2.33) d)el valor de w tal que la variable Z lo excede sólo con probabilidad e)el valor de z tal que P(-z < Z < z) = 0.5 f)el percentil 95 de la distribución normal estándar. a) ; b) -1.96; c) 0.98; d) 3.09; e) z = 0.67; f) 1.64.

7 7 Distribución NORMAL Si X tiene distribución normal con parámetros y entonces: N (0, 1) Así, cualquier probabilidad que esté en términos de X se puede estandarizar poniéndola en términos de Z.

8 8 Distribución NORMAL x Estandarización

9 9 Distribución NORMAL Ejercicio: El tiempo que tarda un automovilista en reaccionar a las luces de freno traseras de otro vehículo que frena es crítico para ayudar a evitar una colisión. El artículo Fast-Rice Brake Lamp as a Collision-Prevention Device sugiere que el tiempo de reacción para una respuesta en tránsito, a una señal de frenado de luces de freno estándar se puede modelar con una distribución normal que tenga un valor medio de 1.25 seg. y una desviación estándar de 0.46 seg. ¿Cuál es la probabilidad de que el tiempo de reacción se encuentre entre 1.00 y 1.75 seg.? R:

10 10 Distribución NORMAL Ejercicio: Los resultados de la prueba de inteligencia Stanford-Binet IQ tiene distribución normal con media 100 y desviación estándar de 16. ¿Cuál es la probabilidad de que una persona seleccionada al azar obtenga una calificación… a)Mayor a 138? b)A menos de 2 desviaciones de la media? c)Hallar el percentil 90. R: , , 120.5

11 11 Distribución NORMAL

12 12 Un producto de consumo diario en el hogar se envasa en paquetes cuyo contenido neto al llegar al consumidor es una variable aleatoria con distribución normal de media 12.5 gr y desviación estándar de 2 gr. ¿Qué proporción de paquetes llegan al consumidor con menos de 8.54 gr? R = Distribución NORMAL

13 13 Distribución NORMAL Ejercicio Según el número de noviembre de 1993 de la revista Harpers, los niños estadounidenses pasan entre 1200 y 1800 horas al año viendo televisión. Suponga que el tiempo que los niños pasan frente al televisor se distribuye normalmente con una media igual a 1500 horas y una desviación estándar de 100 horas. a.¿Qué porcentaje vio televisión entre 1400 y 1600 horas? b.¿Qué porcentaje vio televisión entre1200 y 1800 horas? R: ,

14 La calificación en una práctica de laboratorio es una variable aleatoria normalmente distribuida, con media de 6.7 y desviación estándar de ¿Cuál es la calificación mínima aprobatoria si el 30.5% reprueba la práctica? R = Distribución NORMAL

15 Números aleatorios con Distribución Normal 15 =NORMINV(RAND(),500,50) aleatorio entre 0 y 1media desv. std. En Excel En MEL (Maya) gauss (1) desv. std. gauss (1) + 3 desv. std. media

16 16 Aleatorios2.mel

17 17 Aleatorios2.mel


Descargar ppt "1 Distribución NORMAL Es la distribución más importante en probabilidad y estadística. Muchas poblaciones tienen distribución normal o pueden ajustarse."

Presentaciones similares


Anuncios Google