Descargar la presentación
La descarga está en progreso. Por favor, espere
Publicada porNatividad Casado Navarrete Modificado hace 10 años
1
MATEMATICA I Lógica Matemticas Prof Rubén Millán
2
Lógica La lógica proposicional usa reglas y técnicas para determinar si es o no válido un argumento dado.
3
1. ENUNCIADO: oración o frase que expresa alguna idea (afirmaciones, negaciones,¿?,¡ !, saludos, emociones, etc) . Ejm: “ Pare inmediatamente!” “¿15 y 18 tienen la misma cantidad de divisores?”. “ En realidad, no sé a qué se refiere”. 2. ENUNCIADO ABIERTO: enunciado que contiene variables o letras y no tiene la propiedad de ser verdadero o falso. Ejm: 5x+1=0 a-b =b-a 6y-4>20
4
Todo número real tiene raíz cuadrada.
3. PROPOSICIÓN LÓGICA: enunciado que puede ser verdadero (V) o falso (F), pero no ambas a la vez . Ejm: 1+4=5 . 2 es un número primo. 15 es múltiplo de 2 . Todo número real tiene raíz cuadrada. Todos los números que terminan en cero son divisibles por cinco. V V F F V
5
¿Cuáles de los siguientes enunciados son proposiciones?
Explica por qué sí son proposiciones y por qué las otras no lo son. “ El trabajo en grupo es lo más fácil que existe”. “ 2 es divisor de 15”. “ ¿Fuiste a la manifestación del sábado?”. “Todo número entero es positivo” “ x es un entero positivo”. “ Tranquilícese”.
6
Notación Para denotar o representar las proposiciones se usan letras minúsculas: p, q, r, s, ... p: El 5 es un entero par. q: Los números naturales son positivos. r: 2+5 < 8-1. s: “Un decenio tiene 10 años”
7
4. PROPOSICIÓN SIMPLE O ATOMICA: proposición lógica que consta de un solo sujeto y predicado (Variables proposicionales). Ejm: 3 divide a 6. 12 es un número par. 1 es un número natural. 5. PROPOSICIÓN COMPUESTA O MOLECULAR: proposición lógica compuesta de dos o más proposiciones simples. Ejm: 3 divide a 6 y 12 es un número par. 12 es un número par entonces tiene mitad.
8
OPERADORES LÓGICOS Y , PERO Conjunción O Disyunción SI … ENTONCES
Condicional SI Y SÓLO SI Bicondicional NO, NO ES CIERTO QUE Negación
9
Tablas de Verdad 1. Conjunción: su valor de verdad es verdadero solamente si ambas proposiciones son verdaderas, en los demás casos será falso. p q p q V F V F F F
10
2. Disyunción: su valor de verdad es falso solamente si ambas proposiciones son falsas, en los demás casos será verdadero. p q p q V F V V V F
11
3. Condicional: su valor de verdad es falso solamente si de una verdad se llega a una falsedad, en los demás casos será verdadero. p q p q V F V F V V
12
4. Bicondicional: su valor de verdad es verdadero solamente si ambas proposiciones tienen el mismo valor de verdad, en los demás casos será falso. p q p q V F V F F V
13
5. La Negación: simplemente cambia el valor de verdad.
F F V
14
Construcción de tablas de verdad
¿Cuántas filas tiene la tabla? 1 proposición 2 valores (V o F) 2 proposiciones 4 valores de verdad 3 proposiciones 8 valores de verdad n proposiciones 2n valores de verdad.
15
Fórmula lógica Es una combinación de proposiciones mediante los operadores lógicos. Ejemplo: p q p V F q V F q F V P q F Contingencia (combinación entre verdaderos y falsos) V F F
16
(todos son verdaderos)
Ejemplo: p p p V F p p V Tautología (todos son verdaderos) V
17
Ejemplo: p p p V F p p F Contradicción (todos son falsos) F
18
LEYES DE LA LOGICA PROPOSICIONAL:
1. Ley de Involución (doble negación): ~ (~p) ≡ p 2. La idempotencia: a) p ٧ p ≡ p; b) p ٨ p ≡ p; 3. Leyes conmutativas: a) p ٧ q ≡ q ٧ p b) p ٨ q ≡ q ٨ p c) p ↔ q ≡ q ↔ p
19
4. Leyes asociativas: a) (p ٧ q) ٧ r ≡ p ٧ (q ٧ r) b) (p ٨ q) ٨ r ≡ p ٨ (q ٨ r) c) (p ↔ q) ↔ r ≡ p ↔ (q ↔ r) 5. Leyes distributivas: a) r ٧ (p ٨ q) ≡ (r ٧ p) ٨ (r ٧ q) b) r ٨ (p ٧ q) ≡ (r ٨ p) ٧ (r ٨ q) c) p → (q ٧ r) ≡ (p → q) ٧ (p → r) d) p → (q ٨ r) ≡ (p → q) ٨ (p → r)
20
6. Leyes de Morgan: a) ~ (p ٧ q) ≡ (~p ٨ ~q) b) ~ (p ٨ q) ≡ (~p ٧ ~q) 7. Leyes del Condicional: a) p → q ≡ ~p ٧ q b) ~ (p → q) ≡ p ٨ ~q 8. Leyes del Bicondicional: a) p ↔ q ≡ (p → q) ٨ (q → p) b) p ↔ q ≡ (p ٨ q) ٧ (~p ٨ ~q)
21
9. Leyes de la Absorción: a) p ٨ (p ٧ q) ≡ p b) p ٨ (~p ٧ q) ≡ p ٨ q c) p ٧ (p ٨ q) ≡ p d) p ٧ (~p ٨ q) ≡ p ٧ q 10. Leyes de Transposición: a) (p → q) ≡ (~q → ~p) b) (p ↔ q) ≡ (~q ↔ ~p) 11. Ley de Exportación: (p ٨ q) → r ≡ p → (q → r)
22
13. Elementos Neutros para la Contradicción y Tautología:
12. Formas normales: Para la Conjunción: V ٨ V ≡ V; V ٨ P ≡ P; F ٨ P ≡ F Para la Disyunción: F ٧ F ≡ F; F ٧ P ≡ P; V ٧ P ≡ V 13. Elementos Neutros para la Contradicción y Tautología: P ٨ C = C; C ٧ T = T; P ٧ T = T; C ٨ T = C donde: T= Tautología (Verdad), C = Contradicción (Falso), P = Esquema Molecular Cualquiera
23
SIMPLIFICACIÓN DE PROPOSICIONES
La simplificación de una proposición, o dicho de otra manera, la simplificación de una expresión lógica consiste en reducir la expresión lógica a una forma más simple mediante el uso de los axiomas y/o leyes lógicas. La simplificación consiste en ir desarrollando la expresión paso a paso mediante la sustitución en cada paso de una expresión lógica equivalente a la anterior, hasta llegar a una expresión lógica irreducible. A través de la simplificación podemos también demostrar una equivalencia lógica sin usar tablas de verdad.
24
[(~p p) q] [~q (r q)] [~p (p ~q)] Impla. Material
Simplificar la expresión: [(p p) q] [~q (r q)] [p (p ~q)] Recuerde Ubicar la ley que utiliza [(~p p) q] [~q (r q)] [~p (p ~q)] Impla Material [(~p p) q] [~q (r q)] [(~p p) ~q] Asociativa (v q) [~q (r q)] (v ~q) Complemento v [~q (r q)] v Dominancia v v [~q (r q)] Asociativa v [~q (r q)] Idempotencia ~q (r q) Elemento Neutro (~q r) (~q q) Distributiva (~q r) v Complemento ~q r Elemento Neutro
Presentaciones similares
© 2025 SlidePlayer.es Inc.
All rights reserved.