Descargar la presentación
La descarga está en progreso. Por favor, espere
1
SISTEMAS DE ECUACIONES
U.D. 6 * 3º ESO E.AC. SISTEMAS DE ECUACIONES @ Angel Prieto Benito Apuntes de Matemáticas 3º ESO
2
Apuntes de Matemáticas 3º ESO
U.D * 3º ESO E.AC. MÉTODO DE SUSTITUCIÓN @ Angel Prieto Benito Apuntes de Matemáticas 3º ESO
3
Sistemas equivalentes
Dos sistemas son equivalentes cuando tienen la misma solución. El sistema x + y = es equivalente a x = 2 - y 2.x – 2.y = x – y = 2 Al aplicar en una ecuación la Regla de la suma o la regla del producto, estamos haciendo ecuaciones equivalentes a las dadas. Si eso lo hacemos en las dos ecuaciones de un sistema, lo que hacemos es hallar sistemas equivalentes. El sistema x + y = es equivalente a x + 2.y = 4 x – y = x – y + 2 = 2 @ Angel Prieto Benito Apuntes de Matemáticas 3º ESO
4
Apuntes de Matemáticas 3º ESO
Método de Sustitución PASOS 1.- Despejamos una incógnita cualquiera (x o y) de una ecuación cualquiera (1). Normalmente la más fácil de despejar. 2.- Sustituimos la expresión resultante del paso anterior por la incógnita de la otra ecuación (2), con lo que resulta una ecuación con una incógnita. 3.- Resolvemos la ecuación. 4.- Sustituimos el valor obtenido en la expresión donde se encuentre la otra incógnita (Paso 2) y calculamos su valor. 5.- Comprobamos la solución obtenida. @ Angel Prieto Benito Apuntes de Matemáticas 3º ESO
5
Apuntes de Matemáticas 3º ESO
Método de Sustitución Si en una ecuación de un sistema se sustituye una incógnita por la expresión que se obtiene al despejarla de la otra ecuación, resulta otro sistema equivalente. Ejemplo_1 Sea el sistema: x + 3.y = 4 (1) 3.x - y = 2 (2) De la ecuación (1) se despeja la incógnita “x” : x = 4 – 3.y Y se sustituye su expresión en la ecuación (2) : 3.(4 – 3.y) – y = 2 @ Angel Prieto Benito Apuntes de Matemáticas 3º ESO
6
Apuntes de Matemáticas 3º ESO
Operando … 12 – 9.y – y = 2 12 – 2 = 9.y + y 10 = 10.y y = 1 Llevando ese valor a la ecuación (1), tenemos … x = 4 – 3.y = 4 – 3.1 = 4 – 3 = 1 O sea x = 1 La solución del sistema es x = 1, y = 1 P(1, 1) No son dos soluciones, sino una única solución. Podemos comprobar que cumplen las dos ecuaciones: x + 3.y = 4 (1) 3.x - y = 2 (2) @ Angel Prieto Benito Apuntes de Matemáticas 3º ESO
7
Apuntes de Matemáticas 3º ESO
Ejemplo_2 Sea el sistema: 2x + 3y = 12 (1) 3x - 4y = (2) De la ecuación (1) se despeja la incógnita “x” : 2.x = 12 – 3.y x = (12 – 3.y ) / x = 12 / 2 – 3.y / 2 x = 6 – 1,5 y Y se sustituye su expresión en la ecuación (2) : 3.(6 – 1,5y) – 4y = 1 Operando … 18 – 4,5.y – 4.y = 1 18 – 1 = 4,5.y + 4.y 17 = 8,5 .y y = 17 / 8,5 y = 2 Ya tenemos la mitad de la solución del sistema, el valor de y. Ahora hay que hallar el valor de x. @ Angel Prieto Benito Apuntes de Matemáticas 3º ESO
8
Apuntes de Matemáticas 3º ESO
Llevando ese valor a la ecuación ( 1 ), tenemos … x = 6 – 1,5.y x = 6 – 1,5.2 x = 6 – 3 = 3 x = 3 La solución del sistema es: x = 3, y = 2 P(3 , 2) Comprobación: = 12 12 = 12 3.3 – 4.2 = 1 1 = 1 Ejemplo_3 Sea el sistema: x + 3.y = (1) 3.x – 4.y = (2) De la ecuación (1) se despeja la incógnita “x” : x = – 8 – 3y Y se sustituye su expresión en la ecuación (2) : 3 (– 8 – 3y) – 4y = 15 @ Angel Prieto Benito Apuntes de Matemáticas 3º ESO
9
Apuntes de Matemáticas 3º ESO
Operando … - 24 – 9.y – 4.y = – 15 = 9.y + 4.y - 39 = 13.y y = - 39 / 13 y = - 3 Ya tenemos la mitad de la solución del sistema, el valor de y. Ahora hay que hallar el valor de x. Llevando ese valor a la ecuación (1), tenemos … x = - 8 – 3.y x = - 8 – 3. (- 3) x = = 1 x = 1 La solución del sistema es: x = 1 , y = P(1 , – 3) Comprobación: (-3) = - 8 - 8 = - 8 3.1 – 4.(-3) = 15 15 = 15 La comprobación siempre es muy importante por si nos hemos equivocado en el proceso o al operar. @ Angel Prieto Benito Apuntes de Matemáticas 3º ESO
10
Apuntes de Matemáticas 3º ESO
Ejemplo_4 Sea el sistema: x + y = 2 (1) x – y = 0 (2) Ya hemos visto al comienzo del tema que la solución es el par (1 , 1). Veamos si nos da esa solución: De la ecuación (1) se despeja la incógnita “x” : x = 2 – y Y se sustituye su expresión en la otra ecuación: (2 – y) + y = 2 Operando … 2 – y + y = 2 2 = 2 La ecuación siempre se cumple, valga lo que valga y. Luego la ecuación es indeterminada: y = infinitas soluciones. Como x = 2 – y , x también tendrá infinitas soluciones. ¿Dónde está el fallo, puesto que debía darnos x=1 e y=1 ?. @ Angel Prieto Benito Apuntes de Matemáticas 3º ESO
Presentaciones similares
© 2025 SlidePlayer.es Inc.
All rights reserved.