Descargar la presentación
La descarga está en progreso. Por favor, espere
Publicada porRicardo Peralta Ortiz Modificado hace 9 años
1
@ Angel Prieto BenitoMatemáticas Aplicadas CS I1 PROBABILIDAD U.D. 13 * 1º BCS
2
@ Angel Prieto BenitoMatemáticas Aplicadas CS I2 TEOREMA DE BAYES U.D. 13.10 * 1º BCS
3
@ Angel Prieto BenitoMatemáticas Aplicadas CS I3 TEOREMA DE BAYES Si A1, A2, A3, … es un sistema completo de sucesos, y B es un suceso cualquiera del que se conocen las probabilidades condicionadas, entonces las probabilidades de la forma P(Ai / B) se calculan mediante la expresión: P(Ai).P(B / Ai) P(Ai / B) = ------------------------------------------------------------------------------ P(A1).P(B / A1) + P(A2).P(B / A2) + … + P(An).P(B / An) DondeP(Ai) son las probabilidades a priori. P(Ai / B) son las probabilidades a posteriori. P(B / Ai) son las verosimilitudes. Ejemplo 1 En un instituto el 60% de estudiantes son chicas. Asimismo sabemos que el 70% de los chicos viven en la localidad donde está ubicado el instituto, siendo este porcentaje del 85% en las chicas.. Se elige un estudiante al azar y resulta que ha nacido en la localidad. ¿Cuál es la probabilidad de que sea chico?.
4
@ Angel Prieto BenitoMatemáticas Aplicadas CS I4 Resolución Probabilidades a priori: P(A)= 60% = 60 / 100 = 0,6 Sea chica. P(O)= 1 – P(A) = 1- 0,6 = 0,4 Sea chico. Probabilidades a posteriori: P(A / L) = 85% = 85 / 100 = 0,85 Sea chica y viva en la loc. P(O / L)= 70% = 70 / 100 = 0,7 Sea chico y viva en la loc. Verosimilitudes: Por el Teorema de Bayes P(O).P(L / O) 0,4. 0,7 0,28 P(O / L) = --------------------------------------- = ---------------------------- = -------- = P(A).P(L / A) + P(O).P(L / O) 0,6. 0,85 + 0,4. 0,7 0,79 = 0,3544
5
@ Angel Prieto BenitoMatemáticas Aplicadas CS I5 Resolución gráfica P(O)=0,4 P(A) = 0,6 P(NL / A)=0,15 P(L / O) = 0,7 P(NL / O) = 0,3 P(A).P(L/A) = 0,6.0,85 = 0,51 P(A).P(NL/A) = 0,6.0,15 = 0,09 P(O).P(L/O) = 0,4. 0,7 = 0,28 P(O).P(NL/O) = 0,4.0,3 = 0,12 D I E A G Á R A B M O A L
6
@ Angel Prieto BenitoMatemáticas Aplicadas CS I6 Ejemplo_2: En una casa hay tres llaveros, A, B y C, con 5, 7 y 8 llaves respectivamente. Sólo una llave de cada llavero abre el trastero. Se escoge al azar un llavero y, de él, también al azar, una llave para intentar abrir el trastero. a)¿Cuál es la probabilidad de que se acierte con la llave?. b) ¿Cuál es la probabilidad de que el llavero escogido sea el C y la llave no abra?. c) Si la llave escogida es la correcta, ¿cuál es la probabilidad de que pertenezca al primer llavero A?. d) Si la llave escogida es la correcta, ¿cuál es la probabilidad de que pertenezca al tercer llavero C?. RESOLUCIÓN Probabilidades a priori: P(A) = 1/3 = 0,3333 Sea el primer llavero. P(B) = 1/3 = 0,3333 Sea el segundo llavero. P(C) = 1/3 = 0,3333 Sea el tercer llavero.
7
@ Angel Prieto BenitoMatemáticas Aplicadas CS I7 Probabilidades a posteriori: P(A / L)= 1/5 = 0,20 Abra la llave del llavero A. P(B / L)= 1/7 = 0,1428 Abra la llave del llavero B. P(C / L)= 1/8 = 0,125 Abra la llave del llavero C. P(A / NL) = 4/5 = 0,80 No abra la llave del llavero A. P(B / NL) = 6/7 = 0,8572 No abra la llave del llavero B. P(C / NL) = 7/8 = 0,875 No abra la llave del llavero C. a)Probabilidad de acertar con la llave: P(L)= P(A).P(L/A) + P(B).P(L/B) + P(C).P(L/C) = = 0,3333.0,20 + 0,3333.0,1428 + 0,3333.0,125 = = 0,066667 + 0,047619 + 0,041667 = 0,155953 b) Probabilidad de que el llavero sea el C y la llave no abra: P(C / NL) = P(C). P(NL/C) = 0,3333. 0,875 = 0,291667
8
@ Angel Prieto BenitoMatemáticas Aplicadas CS I8 c) Llave correcta. Probabilidad de que pertenezca al llavero A: Verosimilitudes: Por el Teorema de Bayes P(A).P(L / A) P(A / L) = ---------------------------------------------------------- = P(A).P(L/ A) + P(B).P(L/ B) + P( C ).P(L/C) 0,3333. 0,20 = -------------------------------------------------------------------------- = 0,3333. 0,20 + 0,3333. 0,1428 + 0,3333. 0,125 = 0,066667 / ( 0,066667 + 0,047427 + 0,041667) = 0,427479 d) Llave correcta. Probabilidad de que pertenezca al llavero C: P(C).P(L / C) P(C / L) = ---------------------------------------------------------- = P(A).P(L/ A) + P(B).P(L/ B) + P( C ).P(L/C) = 0,041667 / 0,155953 = 0,267176
9
@ Angel Prieto BenitoMatemáticas Aplicadas CS I9 Resolución gráfica P(A)=1/3 P(C)=1/3 P(B)=1/3 P(L)=1/5 P(A).P(L/A) = 1/3. 1/5 = 0,0667 P(NL)=4/5 P(A).P(NL/A) = 1/3.4/5 = 0,2667 P(L)=1/7 P(B).P(L/B) = 1/3. 1/7 = 0,0476 P(NL)=6/7 P(B).P(NL/B) = 1/3.6/7 = 0,2856 P(L)=1/8 P(C).P(L/C) = 1/3. 1/8 = 0,0416 P(NL)=7/8 P(C).P(NL/C) = 1/3. 7/8 = 0,2912
Presentaciones similares
© 2025 SlidePlayer.es Inc.
All rights reserved.