1 Teoría de las Comunicaciones Teoría de la Información Clase 15-sep-2009.

Slides:



Advertisements
Presentaciones similares
Control en cascada.
Advertisements

Dónde vs. Adónde Dónde means WHERE. When dónde is used, it is usually in relation to where someone IS LOCATED RIGHT THEN. Ex: ¿Dónde estás tú? Yo estoy.
Writing A Lab Report.
Para hablar del pasado. Para referir a las acciones, las situaciones y los eventos del pasado.
Los verbos regulares – ar What is an infinitive? An infinitive in both Spanish and English is the base form of the verb. In English, the infinitive.
Español 1 – el cuatro de diciembre  We practiced two ways of asking what you need (or don’t need), and what you have (or don’t have) in class today. READ.
Preguntas Esenciales 1.What are essential questions? What are their purpose in learning? 2.Look over the essential questions and think about how they might.
QUANTIFIERS We use quantifiers:
Sequencing activities From drilling to meaningful communication.
Las señales de satélite GPS
/1 R1 / Rafael Rodriguez Sistemas de Comunicaciones Móviles FACULTAD DE INGENIERIA U.C.V. Escuela de Ingeniería Eléctrica Introduction to Wireless Communication.
Meteorology: the study of the entire atmosphere, including weather.
La Hora... Telling Time in Spanish. ¿Que hora es? The verb ser is used to express the time of day. Use es when referring to "one o'clock" and use son.
Telling Time.
4.1 Continuidad en un punto 4.2 Tipos de discontinuidades 4.3 Continuidad en intervalos.
1 Elementos de Teoría de la Información Clase 29-Junio-2011.
Notes #18 Numbers 31 and higher Standard 1.2
Write the letter of the correct definition or sentence next to the word below. 1.________ Algebraic Expression 2.________ Equation 3.________ Exponent.
Español 3 Sra. Carpinella.  Because each tense is used for very specific things, there are some key words that indicate whether you would use the imperfect.
Federación de servicios a la ciudadanía medios de comunicación, artes, cultura y deportes The impact of noise on musicians Looking for solutions.
The present tense of ser (to be) (El tiempo presente del verbo ser) Modified by M. Sincioco.
What has to be done today? It can be done in any order. Make a new ALC form Do the ALC Get two popsicle sticks Get 16 feet of yarn. That is 4 arms width.
Teoría de la Información Clase 29-sep-2009
First Grade – High Frequency Word Reading Competition Classroom Competition Created by: Malene Golding School Improvement Officer: Kimberly Fonteno.
Science Career Research Project By Jose pineda. Name of Job: Electrical Engineering I like that I would like to invent new electric and new social networks.
Unit 2A: Lesson 2 How to Talk About Your Schedule Gramática- Present tense of –ar verbs.
El verbo ser y adjetivos en español INTRODUCCIÓN Y CONTINUACIÓN DEL GÉNERO… Ojalá que estuviera en la playa…. I wish I were at the beach…. :)
Definition
Las Preguntas (the questions) Tengo una pregunta… Sí, Juan habla mucho con el profesor en clase. No, Juan no habla mucho en clase. s vo s vo Forming.
1 Las Palabras Interrogativas ¿Quién?¿Qué?¿Cuándo?¿Quién?¿Qué?¿Cuándo?
Tecnología y Estructura de Costos. Technologies u A technology is a process by which inputs are converted to an output. u E.g. labor, a computer, a projector,
Telecomunicaciones Ing. Juan J. Salas Fukutake 2014.
Introducción Nivel 4. Modelo OSI Propiedades Nivel 4 Entrega de mensajes garantizada. Entrega de mensajes en el mismo orden en el que fueron enviados.
Time Telling time is rather easy. You only need to know the numbers up to 59 to be able to tell the time.
 What are some questions you could ask someone in Spanish about pastimes using the vocab and grammar we’ve learned so far this year?  Write down as many.
MODEM Modulator/Demodulator. El por qué de los MODEMS El sistema telefónico análogo sigue siendo la principal facilidad utilizada para comunicación de.
Spanish Sentence Structure How can we make better sentences?
Calentamiento Write the answers to the questions in SPANISH
Español II Segundo tema.  You will be able to tell about what you do everyday in your daily routine.  You will be able to identify items you use to.
JUEVES, EL 10 DE SEPTIEMBRE LT: I WILL RECOGNIZE SOME NEW VOCABULARY WORDS. Go over tests & retake procedures Interpretive Assessment: numbers & alphabet.
©2008 The McGraw-Hill Companies, Inc. All rights reserved. Digital Electronics Principles & Applications Seventh Edition Chapter 2 Numbers We Use in Digital.
UNIVERSIDAD DE COLIMA Facultad de Ingeniería Mecánica y Eléctrica Materia: COMUNICACIONES INALAMBRICAS Tema: REUSO DE FRECUENCIA Y TIPOS DE HANDOFF MARCELO.
Adjectives Spanish One ch.2.
Double Object Pronouns What happens when we have both direct and indirect object pronouns in the same sentence? What goes where? Information for this lesson.
How would you spell the following word out loud in Spanish? Abuelito.
INTRO. TO LAW – MR. STILLMAN 1/5/16 Discrimination based on gender (which is almost but not always discrimination against women) In employment In sports.
LOS VERBOS REFLEXIVOS. WRITE: What is a reflexive verb? A reflexive verb describes when a person doing an action is also receiving the action.
English Language II (2). English Language I (2) Warm-up.
  Jugó=he/she played  Use the preterite tense for past actions that are viewed as over and are not being connected to the present. ¿Te acuerdas?
Saber Vs. Conocer Sra. Altamirano Español II. First, we need to learn the conjugation of the verb SABER Yo sé Tú Sabes él, ella,ud. Sabe Nosotros Sabemos.
Lunes, 5/10/15  What is the purpose of a subject pronoun?  Give at least one example of a subject pronoun in English.
Campanada guidelines in your composition notebook ¿Cómo es tu familia? (10 points) Ex. Hoy es Miercoles el 27 de enero First line will start with the date.
Teoría de las Comunicaciones (a.k.a Redes ) Claudio Enrique Righetti Segundo Cuatrimestre del 2011 Departamento de Computación Facultad de Ciencias Exactas.
Los Pronombres relativos Relative pronouns. Relative pronouns are words that:  Connect ideas within one sentence  Most frequently refer back to a noun.
Present Tense of AR Verbs Las clases de Sra. Schwarz Realidades 1.
Elementos de Teoría de la Información 27-Marzo-2012.
Linear Wire Antennas Infinitesimal Dipole From: Balanis, C. A. “Antenna Theory, Analysis and Design” Third Edition. A John Wiley & Sons, Inc.,Publication.
EQUILIBRIUM OF A PARTICLE IN 2-D Today’s Objectives: Students will be able to : a) Draw a free body diagram (FBD), and, b) Apply equations of equilibrium.
UNIVERSIDAD AUTÓNOMA DEL ESTADO DE HIDALGO ESCUELA SUPERIOR DE ZIMAPÁN
POSSESSIVE ADJECTIVES
First Grade Dual High Frequency Words
GRAPHIC MATERIALS 1. GRAPHIC MATERIALS. GRAPHIC MATERIALS 1. GRAPHIC MATERIALS.
Youden Analysis. Introduction to W. J. Youden Components of the Youden Graph Calculations Getting the “Circle” What to do with the results.
Recetas 3 Objetivo: Hacer preguntas Hablar sobre la comida
Quasimodo: Tienes que hacer parte D de la tarea..
Introduction to CAN. What is CAN and what are some of its features? Serial communication Multi-Master Protocol Compact –Twisted Pair Bus line 1 Megabit.
How to write my report. Checklist – what I need to include Cover page Contents page – with sections Introduction - aims of project - background information.
Astronomy has really big numbers. Distance between Earth and Sun meters kilometers This is the closest star.
Las Preguntas (the questions) Tengo una pregunta… Sí, Juan habla mucho con el profesor en clase. No, Juan no habla mucho en clase. s vo s vo Forming.
Transcripción de la presentación:

1 Teoría de las Comunicaciones Teoría de la Información Clase 15-sep-2009

2 Recordemos ….

3 Señales Analógicas “transportando” analógicas y digital

4 Señales digitales “transportando” analógicas y digital

5 Cambios de fase Señal binaria Modulación en fase Modulación en frecuencia Modulación en amplitud Modulación Digital

6 Distinción entre bit y baudio u Bit u Baudio (concepto físico): veces por segundo que puede modificarse la característica utilizada en la onda electromagnética para transmitir la información La cantidad de bits transmitidos por baudio depende de cuantos valores diferentes pueda tener la señal transmitida. Ej.: fibra óptica, dos posibles valores, luz y oscuridad (1 y 0): 1 baudio = 1bit/s.

7 Distinción entre bit y baudio Con tres posibles niveles de intensidad se podrían definir cuatro símbolos y transmitir dos bits por baudio (destello): Símbolo 1:Luz fuerte: 11 Símbolo 2:Luz media:10 Símbolo 3Luz baja:01 Símbolo 4Oscuridad:00 Pero esto requiere distinguir entre los tres posibles niveles de intensidad de la luz En cables de cobre se suele transmitir la información en una onda electromagnética (corrientes eléctricas). Para transmitir la información digital se suele modular usando la amplitud, frecuencia o fase de la onda transmitida.

8 Cambios de fase Señal binaria Modulación en fase Modulación en frecuencia Modulación en amplitud Modulación de una señal digital

9 Distinción entre bit y baudio En algunos sistemas en que el número de baudios esta muy limitado (p. ej. módems telefónicos) se intenta aumentar el rendimiento poniendo varios bits/s por baudio: 2 símbolos: 1 bit/s por baudio 4 símbolos: 2 bits/s por baudio 8 símbolos: 3 bits/s por baudio Esto requiere definir 2 n símbolos (n=Nº de bits/s por baudio). Cada símbolo representa una determinada combinación de amplitud (voltaje) y fase de la onda. La representación de todos los símbolos posibles de un sistema de modulación se denomina constelación

10 Constelaciones de algunas modulaciones habituales Amplitud Fase Binaria simple 1 bit/símb B1Q (RDSI) 2 bits/símb. 2,64 V 0,88 V -0,88 V -2,64 V QAM de 32 niveles (Módems V.32 de 9,6 Kb/s) 5 bits/símbolo QAM de 4 niveles 2 bits/símb Portadora

11 Modulaciones más frecuentes en Banda Ancha TécnicaSímbolosBits/símboloUtilización QPSK (4QAM) 42CATV ascendente, satélite, LMDS 16QAM164CATV ascendente, LMDS 64QAM646CATV descendente 256QAM2568CATV descendente QPSK: Quadrature Phase-Shift Keying QAM: Quadrature Amplitude Modulation

12 Teorema de Nyquist (II) u El número de baudios transmitidos por un canal nunca puede ser mayor que el doble de su ancho de banda (dos baudios por hertz). u En señales moduladas estos valores se reducen a la mitad (1 baudio por hertzio). Ej: –Canal telefónico: 3,1 KHz  3,1 Kbaudios –Canal ADSL: 1 MHz  1 Mbaudio –Canal TV PAL: 8 MHz  8 Mbaudios –Canal TV NTSC: 6 Mhz  6 Mbaudios u Se trata de valores máximos teóricos!!!

13 Teorema de Nyquist u El Teorema de Nyquist no dice nada de la capacidad en bits por segundo, ya que usando un número suficientemente elevado de símbolos podemos acomodar varios bits por baudio. P. Ej. para un canal telefónico: AnchuraSímbolosBits/BaudioKbits/s 3,1 KHz213,1 3,1 KHz839,3 3,1 KHz

14 Ley de Shannon (1948) u La cantidad de símbolos (o bits/baudio) que pueden utilizarse dependen de la calidad del canal, es decir de su relación señal/ruido. u La Ley de Shannon expresa el caudal máximo en bits/s de un canal analógico en función de su ancho de banda y la relación señal/ruido : Capacidad = BW * log 2 (1 + S/R) donde: BW = Ancho de Banda S/R = Relación señal/ruido

15 Ley de Shannon: Ejemplos u Canal telefónico: BW = 3 KHz y S/R = 36 dB –Capacidad = 3,1 KHz * log 2 (3981) † = 37,1 Kb/s –Eficiencia: 12 bits/Hz u Canal TV PAL: BW = 8 MHz y S/R = 46 dB –Capacidad = 8 MHz * log 2 (39812) ‡ = 122,2 Mb/s –Eficiencia: 15,3 bits/Hz † 10 3,6 = 3981 ‡ 10 4,6 = 39812

16 Algunas Métricas de Performance Peterson – pp 40-48

17 Performance Metrics u Bandwidth (throughput) –data transmitted per time unit –link versus end-to-end –notation KB = 2 10 bytes !!!! Mbps = 10 6 bits per second !!!!!! u Latency (delay) –time to send message from point A to point B –one-way versus round-trip time (RTT) –components Latency = Propagation + Transmit + Queue Propagation = Distance / c Transmit = Size / Bandwidth

18 Ancho de Banda vs Latencia u Relative importance –1-byte: 1ms vs 100ms dominates 1Mbps vs 100Mbps –25MB: 1Mbps vs 100Mbps dominates 1ms vs 100ms u Infinite bandwidth –RTT dominates Throughput = TransferSize / TransferTime TransferTime = RTT + 1/Bandwidth x TransferSize –1-MB file to 1-Gbps link as 1-KB packet to 1-Mbps link

19 Delay x Bandwidth Product u Amount of data “in flight” or “in the pipe” u Usually relative to RTT  Example: 100ms x 45Mbps = 560KB

20 Teoría de la Información y Codificación

21 Teoría de la Información Claude Shannon established classical information theory Two fundamental theorems: 1.Noiseless source coding 2.Noisy channel coding Shannon theory gives optimal limits for transmission of bits (really just using the Law of Large Numbers) C. E. Shannon, Bell System Technical Journal, vol. 27, pp and , July and October, 1948.

22 Information theory deals with measurement and transmission of information through a channel. A fundamental work in this area is the Shannon's Information Theory, which provides many useful tools that are based on measuring information in terms of bits or - more generally - in terms of (the minimal amount of) the complexity of structures needed to encode a given piece of information.

23 NOISE Noise can be considered data without meaning; that is, data that is not being used to transmit a signal, but is simply produced as an unwanted by-product of other activities. Noise is still considered information, in the sense of Information Theory.

24 Shannon’s ideas Form the basis for the field of Information Theory Provide the yardsticks for measuring the efficiency of communication system. Identified problems that had to be solved to get to what he described as ideal communications systems Information Theory Cont…

25 In defining information, Shannon identified the critical relationships among the elements of a communication system the power at the source of a signal the bandwidth or frequency range of an information channel through which the signal travels the noise of the channel, such as unpredictable static on a radio, which will alter the signal by the time it reaches the last element of the System the receiver, which must decode the signal. Information

26 Modelo gral Sistema de Comunicaciones

27 Second, all communication involves three steps  Coding a message at its source  Transmitting the message through a communications channel  Decoding the message at its destination. Information Theory Cont.

28 For any code to be useful it has to be transmitted to someone or, in a computer’s case, to something. Transmission can be by voice, a letter, a billboard, a telephone conversation, a radio or television broadcast. At the destination, someone or something has to receive the symbols, and then decode them by matching them against his or her own body of information to extract the data. Information Theory Cont.

29 Fourth, there is a distinction between a communications channel’s designed symbol rate of so many bits per second and its actual information capacity. Shannon defines channel capacity as how many kilobits per second of user information can be transmitted over a noisy channel with as small an error rate as possible, which can be less than the channel’s “raw” symbol rate. Information Theory Cont….

30 A quantitative measure of the disorder of a system and inversely related to the amount of energy available to do work in an isolated system. The more energy has become dispersed, the less work it can perform and the greater the entropy.measure ENTROPY

31 In general, an efficient code for a source will not represent single letters, as in our example before, but will represent strings of letters or words. If we see three black cars, followed by a white car, a red car, and a blue car, the sequence would be encoded as , and the original sequence of cars can readily be recovered from the encoded sequence.

32 Shannon's theorem, proved by Claude Shannon in 1948, describes the maximum possible efficiency of error correcting methods versus levels of noise interference and data corruption.1948error correcting methods Shannon’s Theorem

33 The theory doesn't describe how to construct the error-correcting method, it only tells us how good the best possible method can be. Shannon's theorem has wide-ranging applications in both communications and data storage applications. Shannon’s theorem

34 where C is the post-correction effective channel capacity in bits per second;channel capacitybits per second W is the raw channel capacity in hertz (the bandwidth); andhertz bandwidth S/N is the signal-to-noise ratio of the communication signal to the Gaussian noise interference expressed as a straight power ratio (not as decibels)signal-to-noise ratiodecibels

35 Channel capacity, shown often as "C" in communication formulas, is the amount of discrete information bits that a defined area or segment in a communications medium can hold. Shannon’s Theorem Cont..

36 The phrase signal-to-noise ratio, often abbreviated SNR or S/N, is an engineering term for the ratio between the magnitude of a signal (meaningful information) and the magnitude of background noise. Because many signals have a very wide dynamic range, SNRs are often expressed in terms of the logarithmic decibel scale. signalnoiselogarithmicdecibel Shannon Theorem Cont..

37 If the SNR is 20 dB, and the bandwidth available is 4 kHz, which is appropriate for telephone communications, then C = 4 log2( ) = 4 log2 (101) = kbit/s. Note that the value of 100 is appropriate for an SNR of 20 dB.SNR Example

38 If it is required to transmit at 50 kbit/s, and a bandwidth of 1 MHz is used, then the minimum SNR required is given by 50 = 1000 log2(1+S/N) so S/N = 2C/W -1 = corresponding to an SNR of dB. This shows that it is possible to transmit using signals which are actually much weaker than the background noise level. Example

39 Shannon's law is any statement defining the theoretical maximum rate at which error free digits can be transmitted over a bandwidtherror bandwidth limited channel in the presence of noisechannelnoise SHANNON’S LAW

40 Conclusion o Shannon’s Information Theory provide us the basis for the field of Information Theory o Identify the problems we have in our communication system o We have to find the ways to reach his goal of effective communication system.

41 “If the rate of Information is less than the Channel capacity then there exists a coding technique such that the information can be transmitted over it with very small probability of error despite the presence of noise.”

42 Información

43 Definición : unidades

44 1 Bit

45 Fuente de memoria nula

46 Memoria nula (cont)

47 Entropía

48 Entropía (cont) u La entropía de un mensaje X, que se representa por H(X), es el valor medio ponderado de la cantidad de información de los diversos estados del mensaje. H(X) = -  p(x) log2 [1/p(x)] u Es una medida de la incertidumbre media acerca de una variable aleatoria y el número de bits de información. u El concepto de incertidumbre en H puede aceptarse. Es evidente que la función entropía representa una medida de la incertidumbre, no obstante se suele considerar la entropía como la información media suministrada por cada símbolo de la fuente

49 Entropía: Fuente Binaria

50 Extensión de una Fuente de Memoria Nula

51 Fuente de Markov

52 Fuente de Markov (cont)