Teoría de Grafos. Temario Teoría de Grafos Grafos Conceptos básicos Problemas clásicos Algoritmos en grafos Metaheurísticas Algoritmos Genéticos Tabú.

Slides:



Advertisements
Presentaciones similares
Tania Guzmán García Luis González Varela Alexandre González Rivas
Advertisements

ALGORITMOS DE KRUSKAL Y PRIM
Representación del conocimiento
Diseño y análisis de algoritmos
Diseño y análisis de algoritmos
GRAFOS Presentado por: Oscar Leonardo Ramírez John Freddy Sandoval
Problemas Algorítmicos
Teoría de Grafos I semestre 2009 UNIVERSIDAD NACIONAL DE INGENIERIA
NUMERO DE CONTROL: NOMBRE DEL TRABAJO: MAPA CONCEPTUAL
Grupo 4 Matías Melgar Pablo Carbonell
OPTIMIZACIÓN EN REDES EN ALGUNOS PROBLEMAS DE OPTIMIZACIÓN PUEDE SER ÚTIL REPRESENTAR EL PROBLEMA A TRAVÉS DE UNA GRÁFICA: ruteo de vehículos, distribución.
MATEMÁTICAS DISCRETAS.
“GRAFOS” Chacón Zamora José Christian González García Andrea
Instituto Tecnológico De Villahermosa
Investigación de Operaciones II
Investigación Operativa II
ESTRUCTURAS DE DATOS AVANZADAS
RafaC - Matemática Discreta - UCM 07/08
Conceptos Básicos ANÁLISIS DE REDES.
Grafos dualmente cordales y sus relaciones con otros tipos de grafos
Teoría de Grafos.
Complejidad Problemas NP-Completos
RECONOCIMIETO DE PATRONES
Problemes de Viatjants
AED I. Estructuras de Datos.
GRAFOS HUGO ARAYA CARRASCO.
Teoría de Grafos.
Estructuras de datos y algoritmos
Programación entera y grafos
Matemáticas para Ciencias de la Computación MCC3182
Grafos. Un Grafo G es un par de conjuntos (V, E), donde V es un conjunto no vacío de elementos llamados vértices o nodos y E es un conjunto formado por.
Ciudad de Könisberg, Prusia, en XVIII:
Teoria de grafos.-clase 4
Universidad de los Andes-CODENSA
Árbol recubridor mínimo Distancias
I n s t i t u t o T e c n o l ó g i c o d e T e c n o l ó g i c o d e V i l l a h e r m o s a ING. EN SISTEMAS CATEDRATICO: I.I. Zinath Javier Gerónimo.
Cesar Luis García Castro
Matemáticas Discretas
TEMA Nº 1 Conjuntos numéricos.
Diseño y análisis de algoritmos
Complejidad de los problemas de decisión
Tema 5: Grafos Rafa Caballero - Matemática Discreta - UCM 06.
Teoría de Grafos.-Clase 2

Algoritmos y Estructuras de Datos III (segunda parte) 1er cuatrimestre 2010 Min Chih Lin Irene Loiseau.
INSTITUTO TECNOLÓGICO DE VILLAHERMOSA. CATEDRATICO:
Agustín J. González ELO320: Estructura de Datos y Algoritmos
Matemáticas Discretas
EQUIPO #7 Aplicaciones de Grafos Erick Ramiro Adrián.
Grafos Emmanuel Parada..
s t a c b d Grafos.
Problema de inclusión en una Curva Digital Por Orellana Muñoz, Alfonso Paz Vicente, Rafael Pérez Medina, Gerardo Rodríguez Naranjo.
Coloración de grafos Teoría de Grafos
Carmen Fernández Grasa I.E.S. Félix de Azara 6 de mayo de 2011
Sesión 3: Teoría de Grafos
Agustín J. González ELO320: Estructura de Datos y Algoritmos
Algoritmos y Estructuras de Datos III (Historia Grafos) 2do cuatrimestre 2012.
TEMA 5: El problema del flujo con costo mínimo
1.Función y ecuación polinomial
Cecilia Laborde González
Estructura de Datos 4 Grafos Dirigidos
Instituto Tecnológico De Villahermosa Alumno: Lázaro García Hernández.
UNIDAD 2 Grafos Árboles abarcadores mínimos Caminos más cortos.
GRAFOS.
GRAFOS EQUIPO E MATEMATTICAS DISCRETAS PRESENTA: Medina Chávez Héctor Bryan 1 INSTITUTO POLITECNICO NACIONAL SECCION DE ESTUDIOS DE POSGRADOS E INVESTIGACION.
Matrices Pág. 1. Matrices Pág. 2 Se llama matriz traspuesta de A, y se representa por A t a la matriz que resulta de intercambiar las filas y las columnas.
Matemáticas Discretas MISTI
Recorridos de grafos Segunda Parte M.C. Meliza Contreras González.
La clase P juega un papel importante en la teoría de la complejidad computacional debido a que: 1. P es invariante para todos los modelos de cómputo que.
CONJUNTOS NUMÉRICOS. 1.Números Naturales 1.1 Consecutividad numérica 1.2 Paridad e imparidad 1.3 Números primos 1.4 Múltiplos y divisores 1.5 Mínimo Común.
Transcripción de la presentación:

Teoría de Grafos

Temario Teoría de Grafos Grafos Conceptos básicos Problemas clásicos Algoritmos en grafos Metaheurísticas Algoritmos Genéticos Tabú Search Colonia de Hormigas Ejercicios Conclusiones

Definición Teoría de Grafos Estudia las propiedades de los grafos. Grafo: un grafo es un conjunto, no vacío, de objetos llamados nodos (o vértices) y una selección de pares de nodos, llamados ejes (o aristas) donde estos pueden ser orientados o no. Un grafo G = (V,X), donde V es un conjunto nodos y X es un subconjunto del conjunto de pares no ordenados de elementos distintos de V.

Definición Teoría de Grafos Nodos / Vértices: constituyen los objetos de la situación a representar. Ejemplo: V = {A,B,C,D,E} Ejes / Aristas /Arcos: conforman las relaciones entre un par de objetos representados por los nodos. Ejemplo: X = {(A,B),(A,C),(B,C),(B,E),(C,D),(D,E)} Tanto los nodos como ejes, pueden tener atributos cuantitativos y/o cualitativos (variables de cualquier tipo).

Ejemlos Teoría de Grafos

Historia El problema de los siete puentes de Königsberg Fue fue planteado y resuelto por Leonhard Euler en 1736, dando origen a la Teoría de los grafos. Teoría de Grafos Dos islas en el río Pregel que cruza Königsberg se unen entre ellas y con la tierra firme mediante siete puentes. ¿Es posible dar un paseo empezando por una cualquiera de las cuatro partes de tierra firme, cruzando cada puente una sola vez y volviendo al punto de partida?

Historia Teoría de Grafos Mapa Grafo de Representación Más adelante vamos a analizar este problema, y vamos a ver que es similar al de los 7 puentes

Historia El problema de los cuatro colores Fue introducido en 1852 por Francis Guthrie, donde plantea si es posible, utilizando solamente cuatro colores, colorear cualquier mapa de países de tal forma que dos países vecinos nunca tengan el mismo color. Fue resuelto en 1976 por Appel y Haken. Se usaron computadoras en la demostración. Teoría de Grafos

Aplicaciones Redes conceptuales Teoría de Grafos

Aplicaciones Redes de transporte Teoría de Grafos

Aplicaciones Plano de autopistas Teoría de Grafos

Aplicaciones Circuitos electricos Teoría de Grafos

Aplicaciones Red Social Teoría de Grafos

Aplicaciones Organigramas Teoría de Grafos

Aplicaciones Polimeros Teoría de Grafos

Atributos Cualitativos Es lo que se conoce como variables nominales En Nodos: sirve para identificar o describir al objeto que se quiere representar En Ejes: describe el tipo de relación que hay entre dos objetos. Teoría de Grafos

Atributos Cuantitativos Corresponden a variables ordinales En Nodos: miden algún aspecto común entre los distintos objetos En Ejes: miden la intensidad de la relación Teoría de Grafos

Topologías Teoría de Grafos Estrella Anillo Árbol

Clasificación Teoría de Grafos No orientados o Bidireccionales Orientados o Direccionados Grafos Multigrafos Es el caso más general

Clasificación Teoría de Grafos No orientados o Bidireccionales Orientados o Direccionados Pseudo-Grafos Es el caso más particular Pseudo-Multigrafos Mixtos

Definiciones Varias subgrafos Grados de un grafo Caminos Ciclos Grafos Autocomplementos Nodos Críticos Componentes conexas Teoría de Grafos

Grado de un Nodo El grado de un nodo es la cantidad de ejes incidentes al vértice v. Notación: d(v) = grado de v. Teorema: La suma de los grados de los nodos de un grafo es 2 veces el número de ejes, o sea:  i=1,n d (v i ) = 2 m Teoría de Grafos

Definiciones en Grafos Un camino en un grafo es una sucesión de ejes e 1 e e k tal que un extremo de e i coincide con uno de e i-1 y el otro con uno de e i+1. Un camino simple es un camino que no pasa dos veces por el mismo nodo. Un circuito es un camino que empieza y termina en el mismo nodo. Un circuito simple es un circuito de 3 o más nodos que no pasa dos veces por el mismo nodo. Teoría de Grafos

Definiciones en Digrafos Un camino orientado en un grafo orientado es una sucesión de ejes e 1 e e k tal que el primer elemento del par e i coincide con el segundo de e i-1 y el segundo elemento de e i con el primero de e i+1. Un circuito orientado en un grafo orientado es un camino orientado que empieza y termina en el mismo nodo. Un digrafo se dice fuertemente conexo si entre para cualquier par de nodos (v,u) hay un camino orientado de v a u. Teoría de Grafos

Componentes Conexas Teoría de Grafos Grafo 1: 6 componentes conexas Grafo 1: 3 componentes conexas Un grafo se dice conexo si existe un camino entre todo par de nodos.

Grafos Completos Teoría de Grafos K3K4K5 Se relacionan todos los nodos contra todos Son objeto de estudio y Sirven como cotas máximas Un grafo se dice completo si todos los nodos son adyacentes entre si.

Ejemplo 1: calles de una ciudad Teoría de Grafos

Ejemplo 2: Cronogramas de Proyectos

Isomorfismo un isomorfismo entre dos grafos G y H es una biyección f entre los conjuntos de sus vértices que preserva la relación de adyacencia. Es decir, cualquier par de vértices u y v de G son adyacentes si y solo si lo son sus imágenes, f(u) y f(v), en H. A pesar de su diferente aspecto, los dos grafos que se muestran a continuación son isomorfos: Teoría de Grafos

f(a)=1 f(b)=6 f(c)=8 f(d)=3 f(g)=5 f(h)=2 f(i)=4 f(j)=7 Teoría de Grafos

CENTRALIDAD de un vértice en un grafo determina la importancia relativa de un vértice en el grafo, la importancia de una persona involucrada en una red social, o, en la teoría de la denominada sintaxis del espacio que se estudia lo importante que puede llegar a ser una habitación en un edificio, así como una carretera en una red urbana. Teoría de Grafos

CENTRALIDAD Grado=número de nodos conectados con un nodo dado Cercanía o Closeness= suma de la suma de las distancias de un nodo con respecto a sus vecinos Intermediación =indica la frecuencia con la que un nodo aparece en el camino más corto que conecta otros dos nodos, a dicho camino se le suele denominar camino geodésico. Teoría de Grafos

Representación de Grafos Matriz de Adyacencia e Incidencia Lista de Adyacencia La representación varía dependiendo del tipo de grafo elegido. Teoría de Grafos

Matrices de Adyacencia e Incidencia

Teoría de Grafos Matriz de Distancias Geodésicas

Árboles Son una categoría particular dentro de grafos. Teoría de Grafos

Arbol Generador Mínimo Algoritmo de Prim Teoría de Grafos

Algoritmos En matemáticas y ciencias de la computación, es una lista bien definida, ordenada y finita de operaciones que permite hallar la solución a un problema. Se escriben en un lenguaje formal (lenguaje de programación) que luego es interpretado por una computadora En la vida cotidiana se emplean algoritmos en múltiples ocasiones para resolver diversos problemas Recetas de cocina Instructivos: para el uso de un artefacto, o para el aprendizaje de alguna tarea Diagnóstico de enfermedades en pacientes Etc, etc, etc. Algoritmos

Ejemplo: Cálculo de Raíces Cuadradas

Algoritmos Complejidad Algorítmica Problemas Sencillos: por su naturaleza, para esta clase de problemas existe un algoritmo que lo resuelve en un tiempo razonable. Se los denomina: P: polinomial Problemas Complejos: contrario al los anteriores, son problemas que admiten una cantidad exponencial de posibilidades. Explorar a todas para obtener la mejor solución, puede requerir miles de años. Por esa razón se realizan estos pro Se los denomina: NP: nondeterministic polinomial

Algoritmos, Heurísticas y Metaheurísticas Meta-Heurísticas

Heurística Dado un problema, un algoritmo heurístico es un algoritmo que intenta obtener soluciones para el problema que intenta resolver pero no necesariamente lo hace en todos los casos. Heurísticas

Algoritmos Genéticos Algoritmos sometidos a azar y seleccion ( en base a un criterio previo) Meta-Heurísticas

Tabú Search Metaheurística muy utilizada en problemas de optimización combinatoria. Dichos problemas se caracterizan por ser complejos de modelar, visualizar, tener muchas variables involucradas, no conocérseles buenos algoritmos exactos que los resuelvan en un tiempo razonable, etc. Algoritmos

Tabú Search Los rasgos más relevantes son: Parte de una única solución inicial, que luego va modificando hasta obtener el resultado Acepta peores soluciones que la mejor encontrada hasta el momento Utiliza una lista tabú de soluciones, o fragmentos de estas, con el objeto de forzar al algoritmo a explorar nuevas soluciones, y evitar de esta manera que el algoritmo caiga en un ciclo repetitivo (mínimo local) Algoritmos

Tabú Search Algoritmos Parto de una única sol. Inicial Lista tabú Mínimos Locales

Algoritmos

Arbol de desición: Tablero de ajedrez Ver si da para poner este ejemplo. Ejemplificar algoritmo exacto vs. Aproximado Algoritmos

Modelado del Grafo Hacer hincapié en que modele la realidad. Un algoritmo resuelve un problema determinado en cualquier grafo, pero cualquier cambio en este, cambia la solución. Es importante reflejar de manera exacta la realidad Algoritmos

A* Pathfinder Encuentra, siempre y cuando se cumplan unas determinadas condiciones, el camino de menor coste entre un nodo origen y uno objetivo. Teoría de Grafos

A* Pathfinder Así, el algoritmo A* utiliza una función de evaluación, donde representa el valor heurístico del nodo a evaluar desde el actual, n, hasta el final, y, el coste real del camino recorrido para llegar a dicho nodo, n, desde el nodo inicial. Teoría de Grafos

Circuitos & Caminos Eulerianos Teoría de Grafos

Circuitos & Caminos Eulerianos Teoría de Grafos

Circuitos & Caminos Eulerianos Teoría de Grafos Circuito Eureliano: hay un circuito que pasa por todos los ejes del grafo una y sólo una vez si y sólo si cada nodo tiene grado par de ejes incidentes. Camino Eureliano:hay un camino que pasa por todos los ejes del grafo una y sólo una vez si y sólo si cada nodo tiene grado par de ejes incidentes, y sólo dos de ellos tienen grado impar, conformando de esta manera el inicio y el fin del camino.

Circuitos Hamiltoneanos Teoría de Grafos

Diejkstra Teoría de Grafos Caminos mínimos. Determina el camino mas corto entre los nodos de un grafo. u.ac.jp/~ikeda/suuri/dijkstra/Dijkstra.shtml

Problema del Viajante de comercio Teoría de Grafos

N-Cliqué Una clique en un grafo es un conjunto de vértices dos a dos adyacentes. En el grafo de la derecha, los vértices 1, 2 y 5 forman una clique porque cada uno tiene un arco que le une a los otros. En cambio, los vértices 2, 3 y 4 no, dado que 2 y 4 no son adyacentes. Teoría de Grafos

N-Cliqué Teoría de Grafos

Coloreo de Mapas Teoría de Grafos

Coloreo de Mapas Teoría de Grafos

Metodología de trabajo Teoría de Grafos Tengo pensado un breve procedimiento de cómo encarar un problema para modelar con grafos. Hacer incapié en que el modelado es estricto, y explicar cómo trabajan los algoritmos en grafos. Mencionar el ejemplo de la ciudad, cartero chino, recolector de basura. Mencionar la tesis de recolector de basura zona zur. Mencionar Caso Cabezas Boqueteros.

Ejercicio 1 Teoría de Grafos El grafo de la siguiente figura representa una red telefónica. Los nodos representan centrales y los ejes líneas telefónicas. Se quiere estudiar la vulnerabilidad de la red ante algún defecto.

Ejercicio 2 Teoría de Grafos Dados los grafos y digrafos de la figura: Escribir las matrices de adyacencia e incidencia. Representar mediante listas de aristas y listas de adyacencias. Calcular los conjuntos de sucesores y de predecesores de los vértices de los digrafos de la figura Calcular el grado de cada vértice, de cada uno de los grafos

Ejercicio 3 Teoría de Grafos Dadas las siguientes matrices de adyacencia representar el correspondiente grafo o multigrafo (no orientado). Representar los siguientes digrafos cuyas matrices de adyacencia son

Ejercicio 4 Teoría de Grafos Armar las matrices de adyacencia, de incidencia y geodésica de cada uno de los siguientes grafos. Calcular el grado de cada uno de sus nodos.

Ejercicio 5 Teoría de Grafos Determinar cuales de estos pares de grafos son isomorfos.

Ejercicio 6 Teoría de Grafos Armar un grafo que modele algún comportamiento y/o situación de la realidad. Fundamentar la definición de nodos y ejes del grafo. Me tienen que ayudar a redactar este ejercicio. La idea es que modelen una sitiación con un grafo y apliquen conceptos de los que vimos a ese modelo, respondiendo a cuestiones propias de la situación representada

Links Relacionados Teoría de Grafos