FISICA.

Slides:



Advertisements
Presentaciones similares
UNIVERSIDAD JUÁREZ AUTÓNOMA DE TABASCO DIVISIÓN ACADÉMICA DE INGENIERÍA Y ARQUITECTURA TRANSFERENCIA DE MOMENTO Y LABORATORIO “UNIDAD 1” EQUIPO 1.
Advertisements

PROBLEMAS DE ONDAS Antonio J. Barbero, Mariano Hernández, Alfonso Calera, Pablo Muñiz, José A. de Toro and Peter Normile Departamento Física Apolicada.
Energía Potencial Eléctrica Potencial Y Diferencia De Potencial
ONDAS Y PERTURBACIONES
Fuerzas y Leyes de Newton
TRABAJO – POTENCIA Y ENERGÍA
MAGNITUD FÍSICA. -PROPIEDAD O CUALIDAD DE UN OBJETO O SISTEMA FÍSICO QUE PUEDE SER MEDIDA CUANTITATIVAMENTE. Medir una magnitud física es compararla con.
Fuerzas de rozamiento Fuerzas de rozamiento viscoso:
FUERZA.
+q A La partícula de carga +q se coloca en reposo en el punto A. Es correcto afirmar que la partícula: a. Ganará energía cinética b. Se moverá en linea.
Magnitudes Prof. Méd. Alejnadro Estrada.
Fuerzas y Leyes de Newton
Magnitudes Física y química 1º Bachillerato.
¿Qué es medir? Objetivo: Identificar las unidades de medida del sistema internacional (SI)
Movimiento Ondulatorio
Ley de Gauss (Karl Friedrich Gauss )
MOVIMIENTO CIRCULAR En los movimientos que realizan los pilotos acróbatas cuando efectúan un movimiento circular en el aire, su trayectoria es una circunferencia,
MAGNITUDES VECTORIALES
APLICACIONES DE LA DINÁMICA
UNIDAD: HIDROSTÁTICA Hidrostática.
Profesor: Carlos Alvarado de la Portilla
ECUACIONES DIMENSIONALES
Descripción del movimiento
INTERACCIÓN ELECTRICA. LEY DE COULOMB
Profesor: Carlos Alvarado de la Portilla
Solución del 2º PARCIAL ELETRICIDAD Y MAGNETISMO (Magistral) Cristian Martínez Oscar Fernando Jipiz Luisa Fernanda Suárez.
ANALISIS DIMENSIONAL Y VECTORES
Fuerzas y Leyes de Newton
 .
Vectores.
M.Ed. Cecilia Fernández F.
Mónica Sarahí Ramírez Bernal A IIS 11 Capitulo 1
Física Lic.Sujey Herrera Ramos
DEPARTAMENTO DE FISICA
ANÁLISIS DIMENSIONAL.
Ondas Electromagnéticas
1 Un estudiante eleva lentamente el extremo de una tabla sobre la cual reposa un bloque. El bloque empieza a moverse cuando el ángulo es de 45º. Podemos.
Instituto de Fisica Universidad Católica de Valparaíso
Deben tener igual dirección, igual módulo y sentido opuesto.
LED DE AMPERE Y LEY DE COULOMB.
*RECORDAR.
MOVIMIENTO ARMÓNICO SIMPLE
Fluidos Hidrodinámica
3) Aplicamos la Ec. Fundamental:
Dinámica Traslacional Elaborado por: Ing. Víctor Velasco Galarza
UNIDAD 1: “FUERZA Y MOMENTO”
CAMPO ELECTRICO Una carga puntual q se localiza en una cierta región en el espacio. Como resultado de q, otra carga puntual qp experimenta una fuerza debido.
Intensidad del campo eléctrico
ANÁLISIS DIMENSIONAL La palabra dimensión en física denota la naturaleza física de la cantidad. Por ejemplo si la distancia se mide en unidades de metros,
Estática Lizett Colín A
COMPRENSIÓN DE CONCEPTOS FUNDAMENTALES Taller # 1 UNIVERSIDAD NACIONAL DE COLOMBIA FACULTAD DE INGENIERIA FUENDAMENTOS DE ELECTRICIDAD Y ELECTROMAGNETISMO.
REPÚBLICA BOLIVARIANA DE VENEZUELA MINISTERIO DEL PODER POPULAR PARA LA DEFENSA UNIVERSIDAD NACIONAL EXPERIMENTAL POLITÉCNICA DE LA FUERZA ARMADA UNEFA.
FORMULA DE LA CONTINUIDAD
LAS FUERZAS SOBRE LOS SÓLIDOS
INSTITUCION EDUCATIVA INMACULADA CONCEPCION Tema: Tercera ley de Newton Acción y Reacción Asignatura: Fisica Prof: Edmundo Narvaez Tumaco – Nariño 2011.
TRABAJO Y ENERGÍA.
Estática Claudia Ramírez
MEDICIONES Y UNIDADES MEDICIONES CANTIDADES FUNDAMENTALES Y UNIDADES
+q A La partícula de carga +q se coloca en reposo en el punto A. Es correcto afirmar que la partícula: a. Ganará energía cinética b. Se moverá en linea.
I UNIDAD: FENÓMENOS ELECTROSTÁTICOS
FÍSICA I GRADO Ingeniería Mecánica
Examen parcial: Aula: :30 FÍSICA I GRADO
Movimientos y fuerzas 6 Índice del libro 1.El movimientoEl movimiento 2.La velocidadLa velocidad 3.Movimiento rectilíneo uniforme (MRU)Movimiento rectilíneo.
 Magnitud Es toda propiedad de los cuerpos que se puede medir. Por ejemplo: temperatura, velocidad, masa, peso, etc.  Medir: Es comparar la magnitud.
TEMA 9. VECTORES..
UNIVERSIDAD NACIONAL EXPERIMENTAL DEL TACHIRA UNIDAD DE ADMISION CURSO PROPEDEUTICO ASIGNATURA FISICA Prof. Juan Retamal G.
MAESTRIA EN GEOFISICA ELIANA LIZETH GUTIERREZ RINCON ABRIL 2016.
Movimiento II: movimientos con velocidad constante
Todo es Movimiento.
Rapidez con que se realiza trabajo A) FUERZA D) TORQUE B) POTENCIA C) ENERGIA.
Transcripción de la presentación:

FISICA

MAGNITUDES Y UNIDADES FISICA Uno de los aspectos esenciales en la vida cotidiana del hombre es medir y calcular, dichas actividades adquieren importancia extraordinaria cuando se trata de la técnica y la investigación científica.

MAGNITUD: Es una categoría filosófica MAGNITUD: Es una categoría filosófica. Pero para nuestros limitados propósitos definiremos a la magnitud como todo aquello que se puede expresar cuantitativamente o medir. MEDIR: Es comparar una magnitud con otra de su misma especie asumida en forma arbitraria como unidad. Por ejemplo, se puede relacionar nuestra estatura con el tamaño de una tiza.

CLASIFICACION DE LAS MAGNITUDES: Las magnitudes se clasifican de diversas formas: POR SU ORIGEN: - Magnitudes Fundamentales: Son aquellas elegidas como base para fijar las unidades de un “Sistema de Unidades” y en función de las cuales se expresan las demás magnitudes de dicho sistema. - Magnitudes Derivadas: Son aquellas magnitudes que se expresan en función de las fundamentales. POR SU NATURALEZA - Magnitudes Escalares - Magnitudes Vectoriales

SISTEMA INTERNACIONAL (SI) En la X Conferencia de Pesas y Medidas (1954) se establecieron en las unidades y magnitudes fundamentales del SI. Este sistema fue complementado en la XIV Conferencia (realizado en Francia en 1971). Dicho sistema también es conocido como sistema de “GIORGI”. El SI se ha establecido a partir de siete magnitudes fundamentales y dos complementarias o suplementarias. MAGNITUDES Y UNIDADES FUNDAMENTALES MAGNITUD UNIDAD SIMBOLO Longitud Metro m Masa Kilogramo kg Tiempo Segundo s

(*) Notación Técnica: 1 pie = 1 ‘ = 30.48 cm. 1’ = 12” 1 pulg = 1” = 2.54 cm. 1 Amstrong = 1 A° = 10-8 cm ÁNALISIS DIMENSIONAL Es una rama auxiliar de la física que estudia las relaciones entre las magnitudes fundamentales y derivadas. ECUACION DIMENSIONAL.- Es una igualdad de tipo algebraico que expresa las relaciones existentes entre las magnitudes fundamentales y las derivadas. Se denota: “[ ]” [A] se lee: “Ecuación dimensional de A”. Vamos a definir las ecuaciones dimensionales de las magnitudes fundamentales de los sistemas anteriormente estudiados.

(a, b, c, d, e, f, g son números reales) A.- SISTEMA ABSOLUTO.- [Longitud] = L, [masa] = M, [Tiempo] = T La derivada tendrá la forma siguiente [D] = MxLyT2 (x, y, z son números reales ) B.- SISTEMA TÉCNICO.- [Longitud] = L, [Fuerza] = F, [Tiempo] = T Análogamente, para cualquier magnitud derivada: C.- SISTEMA INTERNACIONAL.- [Longitud] = L, [masa] = M, [Tiempo] = T, [Temperatura] = θ, [Intensidad de corriente eléctrica] = I, [Intensidad luminosa] = J, [Cantidad de sustancia] = v Luego, cualquier magnitud derivada en el SI tendrá la forma: [S] = LaMbTcρdIeJfvg (a, b, c, d, e, f, g son números reales)

PROPIEDADES DE LAS ECUACIONES DIMENSIONALES.- 1. Las ecuaciones dimensionales cumplen las leyes del Algebra a excepción de la suma y la resta. Por ejemplo, sean A y B magnitudes físicas. [A.B] = [A] . [B] [An] = [A.A.A….A] = [A].[A]….[A] = [A]n “n” veces “n” veces [An] = [A]n Análogamente a c) se deduce:

2. Las ecuaciones dimensionales de los números, medidas de ángulos y funciones trigonométricas es igual a la unidad. A estas cantidades se les llama “MAGNITUD ADIMENSIONALES”. Por ejemplo: [2π x 10-6] = 1 [30°] =1 [Sen 45° + Cos 45°] = 1 [π + 2.25] = 1 [π – Sen α] = 1

3. Principio de Homogeneidad de la suma o resta 3.Principio de Homogeneidad de la suma o resta.- Para poder sumar o restar dos o mas magnitudes físicas, estas deben ser homogéneas, (de la misma especie). Este principio dice que: “En toda suma o resta corresta de magnitudes físicas, cada uno de los términos debe tener la misma ecuación dimensional al igual que la suma total o la diferencia”. Ejm: 5 Kg. + 6 Kg. = 11 Kg. (CORRECTO)  M M M 15 Kg. + 6 m. = ?? (NO ES CORRECTO) M L En conclusión: si Ax2 + By = CD representa una suma de magnitudes físicas y si además esta suma es dimensionalmente correcta, se cumple: [ Ax2] = [By]= [CD]

4. Las constantes numéricas son adicionales y las constantes físicas tienen ecuación dimensional diferente de la unidad, dado que cuentan con unidades:   Constantes numéricas: e = 2.718281………(base del logaritmo neperiano) π = 3.14159…… Constantes físicas: G = 6.67 x 10-11= N.m2/Kg2, (Constantes de gravitación universal) K = 9 x 109 N.m2/C2, (Constantes de coulomb) g = 9.8 m/s2, (Aceleración de gravedad).

APLICACIONES DE LAS ECUACIONES DIMENSIONALES: 1. Sirven para comprobar la veracidad de las formulas físicas. 2. Se utilizan en la deducción de formulas físicas. 3. Sirven para expresar las unidades de cualquier magnitud derivada en función de las magnitudes fundamentales. ECUACIONES DIMENSIONALES MAS IMPORTANTES: A.- SISTEMA ABSOLUTO (L, M, T) - [espacio] = L - [velocidad] = - [aceleración] =

- [fuerza] = [masa x aceleración] = MLT-2 - [trabajo] = [ fuerza x distancia] = MLT-2 = ML2T-2 - [potencia] = - [área] = L2 - [volumen] = L3 - [presión] = - [densidad] = - [velocidad angular] =

B.- SISTEMA TÉCNICO O GRAVITACIONAL (L, F, T) [masa] = En este sistema, se tendrá que reemplazar la ecuación dimensional de la masa [FL-1T-2] en las magnitudes donde esta aparezca; en caso de que la magnitud solo dependa de L y T, su ecuación dimensional será la misma que en el sistema absoluto. ejemplos: - [espacio] = L3 - [velocidad] = LT-1 - [aceleración] = LT-2 - [trabajo] = [fuerza x distancia] = FL - [densidad] = - [presión] =

PROBLEMAS FISICA

Si la ecuación en dimensionalmente correcta: √ (√5 metros + x) -1 (3√5 seg + y) + K = 2 ¶ N0 velocidad longitud tiempo adimensional

Hallar la ecuación dimensional de “A”, si la ecuación dada es homogénea. (A y B) son magnitudes físicas. Asen θ + B 2KFsen θ = K2 “F” es una fuerza y θ = 300 (ML)-2 T-4 (ML)2 T4 absurdo F.D. [M-1L-1T2]4

En el cubo mostrado, hallar la resultante de los vectores, si el lado del cubo es “a”.

Hallar la magnitud de X, si la magnitud de la resultante de los demás vectores que se muestran en el gráfico es 12 unidades. Además se sabe que G es baricentro y m es punto medio de DE. 0,5 unidades 0,7 unidades 0,6 unidades 0,8 unidades

Hallar el modulo del vector R = a + b + c k√6 2k√6 k√5 k√5+√3 2k√5

Un elevador asciende con una aceleración de 4 pies/s2 Un elevador asciende con una aceleración de 4 pies/s2. En el instante en que su velocidad es de 8 pies/s, un perno suelto cae desde el techo del elevador que está a 9 pies del piso. Calcular el tiempo que tardará el perno en llegar al piso. √3 /2 s √6 /2 s √2 /2 s 2√3 /3 s N.A.

Un bloque de 8 Kg se desliza por una rampa inclinada de 30° por encima de la horizontal, con un coeficiente de rozamiento cinético de 0,65. Si la rapidez del bloque en la parte superior de la rampa es 2,4 m/s, la distancia, en metros, que recorre el bloque antes de detenerse es: 5,0 4,6 3,2 3,0 2,6

Un bloque de 2 Kg unido a un resorte de 0,70 m con coeficiente de restitución K=60 N/m, se encuentra en reposo sobre una superficie horizontal sin fricción. Se tira del bloque hacia la derecha con una fuerza horizontal constante F=40 N. La rapidez en m/s, que tiene el bloque a una distancia de 0,30 m de su punto de reposo es: 8,0 6,0 5,0 4,0 3,0

Una cuerda con ambos extremos fijos se hace oscilar, generándose ondas incidentes y reflejadas. Se afirma que las ondas: Son transversales Se desplazan a diferente velocidad Viajan en sentidos opuestos Tienen fase cero Transportan materia Son ciertas: I, II y V I, III y VI II, III y IV II, IV y V III, IV y V

El radio de una tubería de agua disminuye desde 0,2 a 0,1 m El radio de una tubería de agua disminuye desde 0,2 a 0,1 m. Si la velocidad media en la parte más ancha es 3 m/s, la velocidad en la parte estrecha es: 4 6 8 10 12

Una esfera sólida conductora y otra aislante tiene una carga Q distribuida uniformemente. Se puede afirmar que el campo eléctrico, calculado a una distancia r del centro en la esfera, es: Cero dentro de la esfera conductora Aumenta linealmente con r dentro de la esfera aislante Cero dentro de la esfera aislante Decrece según 1/r2 fuera de la esfera conductora Cero fuera de la esfera aislante Son ciertas: I, II y III I, II y IV II, III y V II, IV y V III, IV y V

El campo magnético es producido por: Carga eléctrica estacionaria Carga eléctrica en movimiento Iones en reposo Corriente eléctrica a través de un conductor Son ciertas: I, III I, IV II, III II, IV III, IV

La distancia focal de una lente es de 0,4 m La distancia focal de una lente es de 0,4 m. Si se coloca un objeto a una distancia de 3 m delante de la lente, la posición de la imagen del objeto, en metros, se encuentra a: 0,15 0,25 0,35 0,40 0,46

¿Cuáles son sus expectativas durante el desarrollo de las próximas sesiones? ¿Qué temas específicos quisiera tratar?

Ordene en orden a la prioridad de su interés los tópicos que prefiere desarrollar. Energía Dinámica Calor Ec. Dimensionales Vectores Estática Trabajo Hidrostática Electricidad Hidrodinámica Magnetismo.

Considera necesario una base cognocitiva solida en aritmética, algebra, trigonometría y geometría.