UN JUAN F. QUINTERO DUARTE G2E26

Slides:



Advertisements
Presentaciones similares
Unidad 1 Estructura atómica de la materia. Teoría cuántica
Advertisements

PROPIEDADES ONDULATORIAS DE LA MATERIA
Luis de Broglie ( ) Francés
CIENCIA SIN CERTEZA.
INTRODUCCIÓN A LA FÍSICA CUÁNTICA
PRINCIPIO DE INCERTIDUMBRE
PROPIEDADES ONDULATORIAS DE LA MATERIA
El comportamiento ondulatorio de la materia
FISICA CUANTICA FISICA CUÁNTICA.
FÍSICA CUÁNTICA.
En los Laboratorios Bell, Clinton Joseph Davisson and Lester Halbert Germer guiaron un haz de electrones a traves de un cristal. Este experimento mereció.
Universidad Nacional de Colombia
Teoría y modelos atómicos
FUNDAMENTOS DE FÍSICA MODERNA PERSONAJES UN Diego Sebastián Muñoz Pinzón -G1E18Diego
UN Nombre: Fabian Andres Robayo Quinbtero Fecha: 14/06/2015
Compendio de Experimentos Clásicos de la Física Moderna ANDRÉS FABIÁN DUQUE RINCÓN GIE08ANDRES.
Fundamentos de Física Moderna PROPIEDADES ONDULATORIAS DE LA MATERIA -Ondas de Materia- UN Luis Felipe Cepeda Vargas -G1E05Luis- 15/06/2015.
G1E06Domingo DOMINGO ALFONSO CORONADO ARRIETA FISICA MODERNA
Fundamentos de Física Moderna PROPIEDADES ONDULATORIAS DE LA MATERIA UNIVERSIDAD NACIONAL DE COLOMBIA SEDE BOGOTÁ PEDRO ANDREY CAÑÓN JIMÉNEZ G2E10PEDRO.
Andrés Camilo Suárez Leaño 17/06/2015
Universidad Nacional de Colombia Álvaro Antonio Baena Rubio G1E3Alvaro.
Propiedades Ondulatorias de la Materia
Compendio de Experimentos Clásicos de la Física Moderna
Universidad Nacional de Colombia Sede Bogotá
PROPIEDADES ONDULATORIAS DE LA MATERIA
Joan Camilo Poveda Fajardo G1E21Joan Louis Víctor de Broglie ( ) En su tesis doctoral Broglie propuso que se podrían unificar los comportamientos.
COMPENDIO DE EXPERIMENTOS CLÁSICOS DE LA FÍSICA MODERNA ANDRÉS CAMILO VARGAS PÁRAMO G2E34 19 DE JUNIO DE 2015.
UNIVERSIDAD NACIONAL DE COLOMBIA Oswaldo Ivan Homez Lopez G1E13Oswaldo
UN Andrés Camilo Vargas Páramo G2E34 19 de junio de 2014
FÍSICA DE SEMICONDUCTORE S PERSONAJES UN Natalia Andrea Rodriguez Delgado -fsc35Natalia- Andrés Rey Caballero -fsc33Andres 2015.
Ross Alejandra Silva Torres Ingeniería eléctrica física moderna
FÍSICA DE SEMICONDUCTORES PRINCIPIO DE INCERTIDUMBRE DE HEISENBERG
 G2E22Daniel Daniel Alejandro Morales Manjarrez Fundamentos de física moderna.
Fundamentos de Física Moderna PROPIEDADES ONDULATORIAS DE LA MATERIA -Ondas de Materia- UN Juliana Ramírez G -G02E27Juliana- 14/06/15.
FUNDAMENTOS DE FÍSICA MODERNA PROPIEDADES ONDULATORIAS DE LA MATERIA -ONDAS DE MATERIA- UN ESTEBAN GUZMÁN G2E15CARLOS 2015.
UN Sergio Toledo Cortes G2E FUNDAMENTOS DE FÍSICA MODERNA PERSONAJES.
Andrés Felipe Duque Bermúdez. El físico Louis De Broglie postula que la materia posee una doble naturaleza, que se comporta de manera corpuscular y en.
PROPIEDADES DE ONDULATORIAS DE LA MATERIA UNIVERSIDAD NACIONAL DE COLOMBIA FUNDAMENTOS DE FÍSICA MODERNA NICOLÁS GALINDO GUTIÉRREZ CÓDIGO: G1E09NICOLAS.
Nombre: Camilo Andrés Vargas Jiménez -G2E32Camilo-
PERSONAJES G1E15Oscar Oscar Javier Mora Gil Fundamentos de física moderna Prof. Jaime Villalobos.
PROPIEDADES ONDULATORIAS DE LA MATERIA Daniel Mateo Aguirre Bermúdez G2E03Daniel 08/06/2015.
UN JUAN F. QUINTERO DUARTE G2E26.  Los electrones describen órbitas circulares en torno al núcleo del átomo sin irradiar energía. La causa de que el.
Fundamentos de Física Moderna Ondas de Materia
Fundamentos de Física Moderna Modelos Atómicos
Compendio de Experimentos Clásicos de la Física Moderna Jonathan Alexis Saldarriaga Conde -G1E25Jhonatan- 09/06/2015.
Jhoan Manuel Martínez Ruiz Universidad Nacional de Colombia.
COMPENDIO DE EXPERIMENTOS CLÁSICOS DE LA FÍSICA MODERNA ANDRÉS FELIPE ROJAS RAMÍREZ G1E24ANDRES
Física Cuántica Durante el siglo XIX, diversos físicos trataron de comprender el comportamiento de los átomos y moléculas a partir de las leyes físicas.
Jhoan Manuel Martínez Ruiz Universidad Nacional de Colombia.
Compendio de Experimentos Clásicos de la Física Moderna
FÍSICA CUÁNTICA.
Andres Santiago Espinosa Moreno G2E11Andres. 1. Frank-Hertz (cuantización de la energía) En 1914, James Franck y Gustav Hertz realizaron un experimento.
Compendio de Experimentos Física Moderna
Compendio de Experimentos Clásicos de la Física Moderna
Una nueva descripción del átomo según la Mecánica Ondulatoria
FÍSICA DE SEMICONDUCTORES PRINCIPIO DE INCERTIDUMBRE DE HEISENBERG UN Cristiam Camilo Bonilla Angarita -fsc04Cristiam- 3/Junio/2015.
Oscar Efrén Gómez Gaitán G2E14Oscar.  Postulado de Louis De Debroglie  Ondas de Materia  Experimento de Davisson-Germer (aquí puede incluir material.
Física Cuántica.
UN Andres Santiago Espinosa Moreno G2E11Andres.  Postulado de Louis De Debroglie De Broglie sostuvo que el movimiento de una partícula era gobernado.
Dualidad onda-partícula (relación de broglie)
* Series espectrales de emisión del
Tema 2. Física cuántica Resumen.
Sexta Sesión Antecedentes de la Teoría Cuántica Moderna.
Resumen. Modelos atómicos Después de los modelos iniciales de Thomson y Rutherford, en los que los electrones podían tener cualquier energía, una serie.
Mecánica Cuántica Universidad Nacional de Colombia sede Bogotá Fundamentos de Física Moderna 2016 Edward López Díaz Código
El estado cuántico es la descripción del estado físico que en un momento dado tiene un sistema físico en el marco de la mecánica cuántica. Un estado cuántico.
MECANICA CUANTICA Eliana Rincon Torres T4G2N29 Eliana.
PROFESOR JAIME VILLALOBOS VELASCO DEPARTAMENTO DE FÍSICA UNIVERSIDAD NACIONAL DE COLOMBIA KEVIN DANIEL BARAJAS VALEROG2N03.
Mecánica Cuántica Universidad Nacional de Colombia sede Bogotá Fundamentos de Física Moderna 2016 Sergio Alejandro Sánchez Código
María Constanza calderón Sanjuán
Transcripción de la presentación:

UN JUAN F. QUINTERO DUARTE G2E26 Fundamentos de Física Moderna PROPIEDADES ONDULATORIAS DE LA MATERIA -Ondas de Materia- UN JUAN F. QUINTERO DUARTE G2E26

Postulado de Louise de Broglie Postuló que no solo la energía tenia doble naturaleza sino también toda la materia conocida. De Broglie sostuvo que el movimiento de una partícula era gobernado por unas ondas guías, debido a las cuales las partículas podían presentar naturaleza ondulatoria o corpuscular, la cual podía ser apreciado dependiendo del experimento que usaba. En el experimento de rendijas y electrones al iluminar los electrones el comportamiento ondulatorio se perdía: el patrón de interferencia se destruye y la partícula es como en mecánica clásica. Pero sí se disminuía la frecuencia de la luz que ilumina los electrones, elpatrón de interferencia se recuperaba, es decir, los electrones se comportaban como ondas de longitud de onda l=h/P (según De Broglie), sin embargo, la trayectoria de los electrones se desconocía: no se sabe en donde están los electrones. Entonces:1. Si se conoce la posición de la partícula material x, no se conoce su momento P:l=h/P ó P=h/l (l=?).2. Si se conoce el momento P del electrón, se le asocia una longitud de onda l=h/p, pero no se sabe en donde está (x=?).3. A medida que se va determinando con mayor exactitud la posición x de lapartícula material, se va perdiendo exactitud en el conocimiento de P y viceversa.

Ondas de materia oda la materia presenta características tanto ondulatorias como corpusculares comportándose de uno u otro modo dependiendo del experimento específico. De Broglie se basó en la explicación del efecto fotoeléctrico, que poco antes había dado Albert Einstein sugiriendo la naturaleza cuántica de la luz. Para Einstein, la energía transportada por las ondas luminosas estaba cuantizada, distribuida en pequeños paquetes energía o cuantos de luz, que más tarde serían denominados fotones, y cuya energía dependía de la frecuencia de la luz a través de la relación: E=h\nu \; , donde \nu \; es la frecuencia de la onda luminosa y h \ \; la constante de Planck. El físico francés relacionó la longitud de onda, λ (lambda) con la cantidad de movimiento de la partícula, mediante la fórmula: donde λ es la longitud de la onda asociada a la partícula de masa m que se mueve a una velocidad v, y h es la constante de Planck. El producto mv\ \; es también el módulo del vector \vec p, o cantidad de movimiento de la partícula. Viendo la fórmula se aprecia fácilmente, que a medida que la masa del cuerpo o su velocidad aumenta, disminuye considerablemente la longitud de onda. Esta hipótesis se confirmó tres años después para los electrones, con la observación de los resultados del experimento de la doble rendija de Young en la difracción de electrones en dos investigaciones independientes. En la Universidad de Aberdeen, George Paget Thomson pasó un haz de electrones a través de una delgada placa de metal y observó los diferentes esquemas predichos. En los Laboratorios Bell, Clinton Joseph Davisson y Lester Halbert Germer guiaron su haz a través de una celda cristalina. La ecuación de De Broglie se puede aplicar a toda la materia. Los cuerpos macroscópicos, también tendrían asociada una onda, pero, dado que su masa es muy grande, la longitud de onda resulta tan pequeña que en ellos se hace imposible apreciar sus características ondulatorias. De Broglie recibió el Premio Nobel de Física en 1929 por esta hipótesis. Thomson y Davisson compartieron el Nobel de 1937 por su trabajo experimental.

Experimento de Davisson-Germer Demostró la naturaleza ondulatoria de los electrones, confirmando la hipótesis anterior de Broglie. Poner la dualidad onda-partícula sobre una base firme experimental, representó un gran paso adelante en el desarrollo de la mecánica cuántica. La ley de Bragg para la difracción, se había aplicado a la difracción de rayos X, pero esta fué la primera aplicación de ondas a las partículas.

Relación de indeterminación de Heisenberg En mecánica cuántica, la relación de indeterminación de Heisenberg o principio de incertidumbre establece la imposibilidad de que determinados pares de magnitudes físicas sean conocidas con precisión arbitraria. Sucintamente, afirma que no se puede determinar, en términos de la física cuántica, simultáneamente y con precisión arbitraria, ciertos pares de variables físicas, como son, la posición y el momento lineal (cantidad de movimiento) de un objeto dado. En otras palabras, cuanta mayor certeza se busca en determinar la posición de una partícula, menos se conoce su cantidad de movimientos lineales y, por tanto, su masa y velocidad. Este principio fue enunciado por Werner Heisenberg en 1925. El principio de indeterminación no tiene un análogo clásico y define una de las diferencias fundamentales entre física clásica y física cuántica. Desde un punto de vista lógico es una consecuencia de axiomas corrientes de la mecánica cuántica y por tanto estrictamente se deduce de los mismos.