Identificación de Sistemas

Slides:



Advertisements
Presentaciones similares
Regresión mínimo cuadrada (I)
Advertisements

REGRESION LINEAL SIMPLE
Modelos ARMA.
EC. DIFERENCIAL Def: Se llama ecuación diferencial a una relación que contiene una o varias derivadas de una función no especificada “y” con respecto.
Valores y Vectores Propios
KRIGING CON TENDENCIA.
Bivariadas y Multivariadas
Tema 3: Introducción a la programación lineal
Selección de la estructura y validación del modelo
Expresión de un problema de programación lineal Aplicaciones de la programación lineal Soluciones de un problema lineal Resolución gráfica de un problema.
ANÁLISIS DE ESTABILIDAD
Unidad académica: Ingenierías
KRIGING.
Covarianza muestral Sean x1, x2, ..., xn e y1, y2, ..., yn dos muestras aleatorias independientes de observaciones de X e Y respectivamente. La covarianza.
Modelado y simulación en Ingeniería Química. Manuel Rodríguez
INFERENCIA ESTADISTICA
Pruebas de Especificación en el Modelo de Regresión Múltiple
PROPIEDADES ESTADÍSTICAS DE LOS ESTIMADORES
MODELO DE REGRESIÓN MÚLTIPLE
Representación en espacio de estado
REGRESIÓN POR MÍNIMOS CUADRADOS
ESTRATEGIAS Y DISEÑOS AVANZADOS DE INVESTIGACIÓN SOCIAL
Econometria 2. Modelo de Regresión Lineal Simple
Capitulo 10: La metodología Box-Jenkins
Regresión y correlación
APRENDIZAJE WIDROW- HOFF
Selección de la estructura y validación del modelo
Reguladores Autoajustables (STR) Introducción ANTE EL CASO DE UN PROCESO NO LINEAL O CUYOS PARÁMETROS CAMBIEN CON EL TIEMPO, SE PLANTEA UNA ESTRUCTURA.
Estadística Descriptiva: 4. Correlación y Regresión Lineal
Estadística Descriptiva: 4. Correlación y Regresión Lineal Ricardo Ñanculef Alegría Universidad Técnica Federico Santa María.
Tema 2: Métodos de ajuste
FUNCIONES DE DENSIDAD DE PROBABILIDAD
Estadística 2010 Maestría en Finanzas Universidad del CEMA Profesor: Alberto Landro Asistente: Julián R. Siri.
Método de Gauss-Seidel
TIPOS DE MODELOS DE REGRESIÓN Y SUPUESTOS PARA EL MODELO A
Representación de Señales y Ruido por medio de Series Ortogonales
Identificación de Sistemas
GRUPO DE INVESTIGACION EN CONTROL INDUSTRIAL
Computacion inteligente
I DENTIFICACIÓN DE S ISTEMAS Identificacion de modelos no parametricos 1.
Tema 7: Regresión Simple y Múltiple. EJEMPLO: Aproxima bien el número de préstamos que efectúa una biblioteca a lo largo de su primer año de vida. Nos.
DERIVADO DE LOS COEFICIENTES DE REGRESIÓN LINEAL Y X Esta sequencia muestra cómo los coeficientes de regresión para un modelo de regresión lineal simple.
Unidad V: Estimación de
Identificación de Sistemas
Métodos de calibración: regresión y correlación
La estimacion de parametros
Capítulo 7 Estimación de Parámetros Estadística Computacional
Titular: Agustín Salvia
Introducción a la Inferencia Estadística
Tema 3.- MATRICES INVERTIBLES
Sabemos reconocerlas, y calcularlas como soluciones de sistemas de ecuaciones, o de desigualdades Buscamos métodos de cálculo generales y eficientes Problemas.
Regresión lineal múltiple
GEOMETRÍA ANALÍTICA ESPACIO RECTAS Y PLANOS
Identificación de Sistemas
L A ESTIMACION DE PARAMETROS 1. /31 CONTENIDO Principio fundamental de la estimación de parámetros Un metodo grafico para la estimacion de parametros.
Identificación de Sistemas El metodo de los minimos cuadrados 1.
I DENTIFICACIÓN DE S ISTEMAS El metodo de los minimos cuadrados 1.
1 Y MODELO DE REGRESIÓN SIMPLE Suponemos que una variable Y es una función lineal de otra variable X, con parámetros desconocidos  1 y  2 que queremos.
“CURSO PROPEDÉUTICO PARA EL MEJORAMIENTO DEL PENSAMIENTO MATEMÁTICO”
ESTIMACIÓN DE PARÁMETROS
Método de mínimos cuadrados
 E Expresión de un problema de programación lineal  A Aplicaciones de la programación lineal  S Soluciones de un problema de programación lineal.
6. Sistemas de ecuaciones diferenciales lineales
Computacion inteligente Clustering Fuzzy. 2 Contenido  Conceptos basicos  Tipos de clustering  Tipos de Clusters  La tarea del clustering  Nociones.
Realimentacion de la salida
REGRESIÓN LINEAL SIMPLE
ESTADISTICA DESCRIPTIVA BIVARIADA MEDIDAS DE RELACIÓN ENTRE VARIABLES CUANTITATIVAS.
Estimación estadística
M.E. ADA PAULINA MORA GONZALEZ. Esta parte describe las técnicas para ajustar curvas en base a datos para estimaciones intermedias. Una manera de hacerlo.
Conclusiones: En este trabajo se ha demostrado que se pueden aplicar los algoritmos OCH al ajuste de los parámetros de un modelo borroso mediante la discretización.
Transcripción de la presentación:

Identificación de Sistemas El metodo de los minimos cuadrados

El problema del modelado de datos Contenido Modelado de datos El problema del modelado de datos Modelos lineales y modelos no lineales Estimación de mínimos cuadrados lineal Identificabilidad Mínimos Cuadrados para un modelo lineal (dinamico) Propiedades del método de los Minimos Cuadrados Criterio de Akaike Ejemplos

Modelado de datos

Modelado de datos El modelado de datos se puede expresar de la siguiente forma: Dadas: Una colección finita de datos Una forma funcional Hallar los parametros de la funcion que mejor representen la relacion entre los datos (xi, yi) y = f (x)

Modelado de datos Se busca minimizar unos residuos f (x) = ax+b (x1,y1) (x2,y2) (x3,y3) (x4,y4) (x5,y5) (x6,y6) (x7,y7) f(x) = ax+b f (x) = ax+b Un ejemplo

Criterio de los minimos cuadrados Formulacion del ajuste por Minimos cuadrados:

Criterio de los minimos cuadrados En el ejemplo, hallar el valor de los coeficientes a y b tal que se minimiza donde N es el numero de datos entrada-salida dado

Un problema de optimizacion Aproximaciones computacionales: Solucion analitica: minimos cuadrados lineal Algoritmos numericos para la minimizacion de una funcion Basados en el gradiente; algoritmos numericos generales para hallar raices; algoritmos que aprovechan la forma de la funcion Algoritmos con una aproximacion basada en la inteligencia artificial: algoritmos geneticos

El problema del modelado de datos

La aproximacion de funciones Una funcion puede verse como un mapeo Ejemplo: ley fundamental de la dinámica F = ma y = a, u = F, g(u) = u/m. En general, y y u pueden ser vectores

La aproximacion de funciones Al realizar la aproximacion de una funcion, sólo están disponibles un número finito de muestras ¿Podemos postular la existencia de un modelo que explique los datos?

Ejemplo: una entrada, una salida ¿Como podemos modelar el proceso que genera estos datos?

Ejemplo: dos entradas, una salida

La aproximacion de funciones En general, se asume que las muestras disponibles son ruidosas k = 1,2,…, N Entonces el problema de la aproximacion de funciones es equivalente a reconstruir la hipersuperficie g(u) a partir de los pares (u(k),y(k)).

El problema de la aproximacion de funciones Dada cierta función, deseamos construir una función f tal que donde y

El problema de la aproximacion de funciones La informacion que se dispone de g son N pares de entrada-entrada normalmente se asume que los valores de salida del conjunto de muestras de entrenamiento estan adulterados por el ruido

El Reto Normalmente sabemos muy poco sobre la asociacion entre U y Y

El Reto Normalmente sabemos muy poco sobre la asociacion entre U y Y Puede ser difícil proponer una buena función f(u) para ajustar el mapeo desconocido g

El Reto Normalmente sabemos muy poco sobre la asociacion entre U y Y ? Puede ser difícil proponer una buena función f(u) para ajustar el mapeo desconocido g Puede ser dificil incluso saber cuando tenemos una buena aproximación ?

Modelos lineales y modelos no lineales

Modelos lineales vs . No lineales Es comun asumir que f (u) pertenece a una familia de funciones que comparten la misma estructura y difieren por los valores tomados por ciertos parametros θ.

Aquí, la linealidad se refiera a “con respecto a los parametros” El modelo lineal Un modelo lineal (en los parametros) asume que la funcion es lineal respecto a los parametros θ Aquí, la linealidad se refiera a “con respecto a los parametros”

Modelos no-lineales En los modelos no-lineales la funcion es no-lineal respecto a los parametros θ

Estimación de Mínimos Cuadrados Lineal

El problema U Y t Regresor lineal Dada una colección finita de observaciones ZN = {u(0), y(0), u(1), y(1), ..., u(N), y(N)} t Y U Proceso Modelo Regresor lineal

El regresor lineal Se asume que la relación entrada-salida puede ser descrita por una estructura de regresor lineal f(u,θ) es denominada la funcion de ajuste. Las fi(u) son denominadas las funciones base

Algunas funciones base Funciones polinomiales Funciones base Gausianas Funciones base Sigmoidales Fourier  wavelets

Los errores cometidos Dados unos datos y el modelo lineal, deseamos calcular los “mejores” parametros. Queremos minimizar los errores. Cortesia de Johann Fredrich Carl Gauss (1777-1855) error

Los residuos El ajuste de minimos cuadrados halla el vector de parametros θ tal que se minimiza residuos = errores

Naturaleza de los residuos Normalmente se asume que los residuos son variables aleatorias, con las siguientes caracteristicas: Independientes Con valor esperado es cero Normalmente distribuidas Tienen la misma desviacion estandard

El modelo de los datos Considere, por ejemplo, el modelo con tres parametros: Podemos escribir todo en forma vectorial

Calculo de los mejores θj’s Considerando N datos, en forma matricial

Calculo de los mejores θj’s cuando N > q normalmente no es posible encontrar los θj que simultáneamente satisfacen todas las N ecuaciones, entonces El criterio para determinar el estimado de los parametros optimos es

Calculo de los mejores θj’s La Cantidad a ser minimizada es Que expresada en forma matricial nos queda

Calculo de los mejores θj’s La Cantidad a ser minimizada es igualando a cero su derivada

La ecuacion normal El valor minimo de J se obtiene con el vector θ que satisface la ecuacion normal Ecuacion normal

identificabilidad

Existencia de los parametros La solución única a las ecuaciones normales pueden ser obtenida siempre que la matriz (ATA) sea no singular (existencia de la inversa) Llamado el Estimador de minimos cuadrados lineal

Existencia de los parametros El estimador de minimos cuadrado lineal: Notese que el minimizador obtenido es influenciado por: Las funciones de ajuste seleccionadas, y Las señales de entrada observadas.

Identificabilidad Dadas: Las señales de entrada observadas, y El estimado de los parametros (del modelo) existen si la inversa de la matriz (ATA) existe Las señales de entrada observadas, y Las funciones de ajuste seleccionadas Se dice entonces que el modelo es identificable

Identificabilidad Se dice entonces que el modelo es identificable Observe que decimos “que entonces el modelo es identificable” La identificabilidad se refiere al modelo Quizas el modelo con otros datos sea identificable O quizas los mismos datos otra estructura de modelo sea identificable

Los parametros “verdaderos” Si existen, el vector de parámetros “verdadero” describe a aquel que minimiza el error A menudo es conveniente estudiar las propiedades de los parámetros en terminos del error es el vector de parámetros “verdadero”.

Mínimos Cuadrados para un modelo lineal (dinamico)

Ejemplo: estructura AR En la identificacion de sistemas usualmente se usa un modelo AR (AutoRegressive model), donde y(k) es la salida del sistema en el tiempo k ≥ 0.

Ejemplo: estructura AR Una forma util de ver el modelo AR es verlo como una manera de determinar el siguiente valor de la salida, dadas las observaciones previas

Ejemplo: estructura AR En este caso el modelo AR esta definido por el modelo lineal En general, el vector de regresión (regresor) se construye,, con los datos de entrada-salida pasados, hasta el instante k-1

Ejemplo: estructura ARX Por ejemplo, en el caso de una estructura de modelo simple como el ARX de primer orden:

Ejemplo: estructura ARX En el caso de una estructura ARX la correspondencia con la formulación general seria

La matriz de datos El problema de la estimacion de parametros consiste en encontrar relaciones matemáticas entre secuencias de entrada y las secuencias de salida. En general, los datos se tienen en forma de una matriz t = 1,...N

La estimación de parámetros La estimación de parámetros consiste en hallar la estima de  que minimiza el criterio. Error de Predicción

Relacion con la identificacion En el modelo de regresión lineal se suele incorporar un término de perturbación (n) Para modelar la parte de la salida que no puede ser explicada por el regresor lineal

(n) es un proceso estocástico Naturaleza de (n) Se da una caracterización estocástica para (n), (n) es un proceso estocástico

Solucion: Minimos cuadrados Asumamos que el sistema dinamico se puede representar por el modelo lineal es el vector de regresion entradas y salidas retardadas es el vector de parametros

Solucion: Minimos cuadrados En estas condiciones Se introducen los terminos N a fin de retener expresiones que sean computacionalmente factibles para señales de entrada cuasi-estacionarias

Existencia de la solucion El requisito necesario para garantizar una solución única es que la señal de excitación sea persistentemente excitada de orden mayor que d, siendo d el numero de parametros del modelo, [Söderström89].

Propiedades del método de los Minimos Cuadrados

Unicidad de la solucion La principal ventaja de este método es que Si se cumplen las condiciones de identificabilidad la obtención del mínimo global está garantizada Y la solucion es unica

Naturaleza de los parametros Si se da una caracterización estocástica para (n), (n) es un proceso estocástico ¡El estimador por mínimos cuadrados es una variable aleatoria!

Los parametros “verdaderos” Supongamos la existencia de un juego de parametros “verdadero” donde e(t) es un ruido blanco de media cero y variancia

Propiedades de los parametros estimados converge a cuando N tiende a infinito La variable aleatoria se comporta como una distribución normal de media cero y covariancia

Propiedades del ruido estimado Un estimador de la variancia de e(t) es: siendo d el número de parámetros del modelo

Observacion si la perturbación e(t) no es un ruido blanco y la relación señal útil/señal ruido es importante, la convergencia a no está garantizada.

Criterio de Akaike

Criterio de Akaike Una variante del método LS, conocido como Criterio de Akaike consiste en minimizar la función de pérdidas

Ejemplos

Ejemplo Ejemplo: Supóngase el sistema ¿Cuál es el tipo de estructura más apropiada a elegir para identificación?

Eleccion de la estructura El tipo de estructura más apropiada para identificación debe ser del tipo “Output Error” (OE). Por tanto nb = 2, nf = 3 y nk = 2.

Eleccion de la estructura: Ejemplo El tipo de estructura más apropiada para identificación debe ser del tipo “Output Error” (OE). ¡ Sin embargo, en la mayoría de los casos el diseñador no dispone de la información sobre el sistema real !

Ejemplo Ejemplo: Supóngase el sistema Estimar los parámetros del modelo OE escogido Estimar un modelo ARX. Comparar resultados.

Ejercicio ar armax arx bj oe pem ivar ivx iv4 present Investigar las funciones mostradas del Toolbox de identificacion en matlab

Problemas Ver el documento Tema 3_problemes.pdf De los profesores Teresa Escobet y Bernardo Morcego de la Escola Universitària Politècnica de Manresa [Escobet et al., 2003].

Fuentes De Nicolao G., System Identification: Problems and perspectives. Dipartimento di Informatica e Sistemistica, Universiti di Pavia, Pavia, Italy. 1995. Passino Kevin M., Yurkovich Stephen, Fuzzy Control. Addison Wesley Longman, Inc. 1998 Recktenwald Gerald, A Curve-Fitting Cookbook for use with the NMM Toolbox. Mechanical Engineering Department, Portland State University, Portland, Oregon. October 17, 2000. Recktenwald G. W., Numerical Methods with MATLAB: Implementations and Applications. Prentice-Hall, Englewood Cliffs, NJ, 2000. Ljung Lennart, Linear System Identificación as Curve Fitting. Report no.: LiTH-ISY-R-2466. Division of Automatic Control. Department of Electrical Engineering Linkopings universitet, Linkoping, Sweden. August 7, 2002. Moler C. and Moler K., Numerical Computing with MATLAB. The MathWorks, Inc. and Stanford University. 2003. Sanjay Lall, Modern Control 1. Lecture Notes. Standford University. Winter quarter, 02-2003

ULTIMA DIAPOSITIVA