Prof. Pedro José Tineo Figueroa

Slides:



Advertisements
Presentaciones similares
Fluidos en movimiento Nos concentraremos en el flujo estable, es decir, en el movimiento de fluido para el cual v y p no dependen del tiempo. La presión.
Advertisements

UNIVERSIDAD NACIONAL DE INGENIERÍA
UNIVERSO=SISTEMA+ALREDEDORES
Introducción: Calor y Temperatura Primer Principio Segundo Principio
Ciclos Termodinámicos
Turbomáquinas Tema Nº 2: Termodinámica, Mecánica de Fluidos, Definiciones de Eficiencia Prof.: Redlich García Departamento de Energía La Universidad del.
Mecánica de Fluidos Docente: MSc. Ing. Alba V. Díaz Corrales
DINÁMICA DE LOS FLUIDOS
Sistemas de Aire Comprimido
PRÁCTICA # 7 “BOMBAS CENTRÍFUGAS”
La Succión....
Cálculos de Pérdidas por Fricción
U N E F A Unidad III Bombas Centrífugas Guía Teórica.
TEMA 4. IMPULSIÓN Y DISTRIBUCIÓN DEL AGUA EN FUENTES. 4
Fluidos Capítulo 15 Física Sexta edición Paul E. Tippens Densidad
EQUIPO DE FRICCIÓN EN TUBERÍAS
ECUACIÓN DE CONTINUIDAD
BOMBAS.
TEMA 6.2. DINÁMICA DE FLUIDOS. (HIDRODINÁMICA).
USMP LABORATORIOS DE INGENIERIA CIVIL Feb 2010 Ing
FLUIDOS CURSO DE FÍSICA II.
Factor de fricción y balance macroscópico de cantidad de movimiento
UNIVERSIDAD VERACRUZANA FACULTAD DE CIENCIAS QUIMICAS
SISTEMAS DINÁMICOS DE SEGUNDO ORDEN
Capítulo 15B – Fluidos en movimiento
PROPIEDADES FUNDAMENTALES DE LOS LIQUIDOS
AREA DE FISICA UNIDAD 11: Estática de Fluidos
ECUACIONES DIFERENCIALES PARCIALES
CUADRO ELECTRICO BOMBAS REDUCCION VALVULA DE CIERRE
Se estudian fenómenos con fluidos en movimiento
TEMA 3. CONCEPTOS BÁSICOS DE HIDRÁULICA
CAPITULO 9 CICLO RANKINE DE POTENCIA MEDIANTE VAPOR
ECUACIONES DE FLUJO EIQ_303 Andrea Fredes.
3.3 Pérdidas de carga (cont.)
Ecuaciones Fundamentales
Criterio de espontaneidad: DSuniv > 0
Prof. Pedro José Tineo Figueroa
Mecánica de Fluidos Reynolds, factor de fricción
ING.INDUSTRIAS ALIMENTARIAS
Prof. Pedro José Tineo Figueroa
Prof. Pedro José Tineo Figueroa
ECUACION DE ESTADO DE VAN DER WAALS
Prof. Pedro José Tineo Figueroa
ENERGIA EOLICA Clase 2 FUENTE: Eric Savory: Department of Mechanical and Material Engineering University of Western Ontario.
FLUJO DE FLUIDOS EN CONDUCTOS CERRADOS
SELECCIÓN DE UNA BOMBA CENTRÍFUGA
CAPÍTULO 3 CICLOS DE POTENCIA CON TURBINAS A GAS
Universidad Técnica Federico Santa María Academia de Ciencias Aeronáuticas Ingeniería en Aviación Comercial Eduardo Barriga Schneeberger Termodinámica.
Facilitadora: M. Sc. Alba Veranay Díaz Corrales
Mecánica de los fluidos
Convección Convección natural.
MODELAMIENTO MATEMÁTICO DE PROCESOS INDUSTRIALES
BALANCE DE MATERIA Y ENERGIA
EJERCICIOS DE APLICACIÓN, 3° PRUEBA PARCIAL.
Conservación de la energía Ecuación de Bernoulli
CURSO: ELEMENTOS DE ELEVACION Y TRANSPORTE
CURSO: ELEMENTOS DE ELEVACION Y TRANSPORTE
Problemas simples de tuberías
Universidad Central del Ecuador
Introducción: Calor y Temperatura Primer Principio Segundo Principio
GRUPO # 2.
Tobera Miguel A. Robles Castañeda Edgar Magdaleno Sánchez
TEMA 5: TERMOQUÍMICA QUÍMICA IB.
Facultad de Ciencias Exactas Químicas y Naturales Universidad Nacional de Misiones Cátedra: Fundamentos de Transferencia de Calor Área: Convección Ing.
Pérdidas por fricción Un fluido en movimiento ofrece una resistencia de fricción al flujo Debido al roce, parte de la energía del sistema se convierte.
PROCESOS TERMODINAMICOS
TEMA 4. SISTEMAS HIDRÁULICOS
Convección Forzada Flujo Laminar Interno
Bombas y sistemas de bombeo
ORGANIZACIÓN DE LA CLASE
Transcripción de la presentación:

Prof. Pedro José Tineo Figueroa Unidad VI: Balances Macroscópicos Prof. Pedro José Tineo Figueroa

OBJETIVO TERMINAL Al finalizar esta unidad el estudiante debe ser capaz de: Analizar y Calcular hidráulicamente Sistemas de Conducción de Fluidos a Través de Tuberías.

OBJETIVO ESPECÍFICOS Desarrollar el balance global de energía mecánica para la deducción de la ecuación de Bernoulli. Emplear la ecuación de energía mecánica para el cálculo de pérdidas por fricción. Establecer los criterios de aplicación de la ecuación de energía mecánica. Desarrollar las ecuaciones para flujo en conductos. Establecer la forma de incluir las bombas hidráulicas en la ecuación de Bernoulli. Relacionar las ecuaciones de flujo con las características físicas del sistema.

CONTENIDO Balance Global de Energía Mecánica. 2. Ecuación de Bernoulli. 3. Pérdidas de carga en Tuberías. 3.1 Por Fricción 3.2 Por Accesorios 4. Trabajo Mecánico y Potencia de Bombas Hidráulicas. 5. Aplicaciones. Bibliografía: Mott R. MECÁNICA DE FLUIDOS APLICADA. Prentice-Hall, 1996. Streeter V. MECÁNICA DE FLUIDOS. Mc Graw Hill 2002. Welty, Wicks y Wilson. FUNDAMENTOS DE TRANSFERENCIA DE MOMENTO CALOR Y MASA. Segunda edición, Limusa Wiley, 2001

Ecuación de Bernoulli Ecuación de Euler a lo largo de una línea de Corriente. Uno de los enfoques para obtener la ecuación de Bernoulli y establecer la ecuación de conservación de la energía mecánica entre cualquier par de puntos a lo largo de una línea de corriente es mediante la integración de la ecuación de Euler s A pA p’A gAs  Consideraciones: Flujo a lo largo de una línea de corriente Flujo sin fricción Volumen de control muy pequeño. Balance de Fuerzas:

Ecuación de Bernoulli Balance de Fuerzas: (cont.) as representa la aceleración, y esta a su vez de define como:

Ecuación de Bernoulli Además si se considera la variable z, como la diferencia de altura entre dos puntos de la línea de corriente, se puede comprobar: Sustituyendo y simplificando se tiene: El resultado dividido por el peso específico se conoce como la ecuación de Euler para una línea de corriente:

Ecuación de Bernoulli La ecuación de Bernoulli se obtiene por integración de la Ecuación de Euler: C se conoce como la constante de Bernoulli, cuyo valor no varía a lo largo de la línea de corriente, lo que hace particularmente útil está ecuación, cuya aplicación entre dos puntos establece el principio de conservación de la energía mecánica:

Ecuación de Bernoulli Este resultado también se puede obtener aplicando la primera y segunda ley de la termodinámica a un flujo de un fluido incompresible sin fricción: Por otra parte, la relación termodinámica: dh=Tds+vdp se puede integrar fácilmente para este proceso reversible, isotérmico y con un fluido incompresible. Sustituyendo: (v=1/)

Ecuación de Bernoulli Ejemplo: Un medidor Venturi se utiliza para determinar el caudal en una tubería. El diámetro en la sección 1 es 6 pulg, y en la sección 2 es 4 pulg. Encontrar el caudal a través de la tubería cuando fluye aceite con densidad relativa 0,9 y p1-p2=3 psi. 1 2

Ecuación de Bernoulli La ecuación de Bernoulli también es aplicable en las siguientes condiciones: Cuando todas las líneas de corriente se originan en un embalse, donde el contenido energético es el mismo en todas partes, la constante de Bernoulli no cambia de una línea a otra, entonces los puntos 1 y 2 pueden seleccionarse arbitrariamente. En el flujo de un gas, cuando el cambio de presión es una pequeña fracción de la presión absoluta, se puede considerar el gas como incompresible. Para un flujo no estacionario en condiciones que cambian gradualmente, se puede aplicar Bernoulli si un error apreciable. Esta ecuación es útil en el análisis preliminar de casos de flujo de fluidos reales, despreciando la fricción. Luego se pueden obtener los resultados de diseño utilizando una forma generalizada de la ecuación de Bernoulli donde los donde otros efectos incluyendo la fricción sean tomados en cuenta.

Ecuación General de la Energía Esta ecuación no es más que una expansión de la ecuación de Bernoulli. Mediante ésta es posible resolver problemas en los que se presentan pérdidas y adiciones de energía. hT Hb HT En este sistema la ecuación general de la energía queda: Donde E´ representa la energía del fluido por unidad de peso en cada punto.

Ecuación General de la Energía La ecuación queda entonces: Donde: hT: Pérdidas de energía por parte del sistema, debidas a la fricción en los conductos, ó pérdidas menores debidas a la presencia de válvulas y conectores. [m] Hb: Energía añadida o agregada al fluido mediante un dispositivo mecánico como puede ser una bomba. [m] HT: Energía removida o retirada del fluido mediante un dispositivo mecánico como podría ser un motor de fluido. [m]

Pérdidas de Energía Las Pérdidas de Energía (hT): se deben a la fricción (hf) y los accesorios (he) presentes en el sistema. Pérdidas por Fricción o Mayores (hf): Se deben exclusivamente a la fricción del fluido con las paredes de la tubería. Éstas se estiman a partir de la ecuación de Darcy-Weisbach (Unidad V): Pérdidas por Accesorios o Menores (he): Son las pérdidas que ocurren en las tuberías debidas a codos, uniones, válvulas, etc. En la mayoría de los casos las pérdidas menores se determinan experimentalmente, sin embargo una excepción importante es la pérdida debida a la expansión brusca en una tubería. En general estas pérdidas son proporcionales a la cabeza de velocidad (v2/2g), y la constante de proporcionalidad (K) depende del accesorio en cuestión.

Pérdidas de Energía Expansión Súbita: Las pérdidas debidas a la expansión súbita en una tubería pueden calcularse utilizando tanto la ecuación de energía como la de momentum, obteniéndose el siguiente resultado: Expansiones Graduales: Ha sido estudiada experimentalmente, incluyendo la fricción a lo largo de la expansión, uno de estudios se resume en la gráfica siguiente:

Pérdidas de Energía Contracción Súbita: En este caso la constante K depende de un coeficiente de contracción (Cc) determinado experimentalmente, cuyos valores se muestran en la tabla. A1/A2 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1,0 Cc 0,624 0,632 0,643 0,659 0,681 0,712 0,755 0,813 0,892 1,00 Entrada a una tubería: La constante K depende del tipo de entrada

Pérdidas de Energía Otros Accesorios: Datos experimentales muestran una amplia variación en los coeficientes para accesorios especiales. Para efectos prácticos se considerarán los valores reportados en la siguiente tabla: Accesorio K Válvula de Globo (Completamente abierta) 10 Válvula de ángulo (Completamente abierta) 5 Válvula de retención (Completamente abierta) 2,5 Válvula de Compuerta (Completamente abierta) 0,19 Codo en U 2,2 Tee Estándar 1,8 Codo Estándar 0,9 Codo de radio medio 0,75 Codo de radio largo 0,6

Bombas y Motores de Fluido Bombas: Son dispositivos cuya función es suministrarle energía al fluido. Esta energía por unidad de peso suministrada, se conoce como altura de carga de la bomba (Hb) y se puede deducir en términos de la energía neta suministrada por la bomba. La diferencia entre la energía que consume el motor de la bomba y la que efectivamente llega el fluido se expresa en términos de eficiencia:

Bombas y Motores de Fluido En el caso de las bombas centrífugas, esta información es suministrada por el fabricante en gráficos como el que se muestra a continuación: Funcionamiento de una bomba centrífuga de 11/2 x 3-6 a 1750 rpm.

Bombas y Motores de Fluido Además de los requerimientos de Altura de Carga, Caudal, potencia y Eficiencia, en la especificación de una bomba necesario considerar aspectos como las condiciones de admisión del fluido bombeado. Estas condiciones deben garantizar la no formación de burbujas de vapor en la centrífuga de la Bomba. Este fenómeno se llama Cavitación Para evitar esto se debe garantizar una altura neta de succión positiva (NPSHR), cuyo valor mínimo es suministrado por el fabricante, el valor disponible se puede calcular por la siguiente expresión: Donde: hsp: Cabeza de presión estática aplicada el fluido [m] hs: Diferencia de altura desde el nivel del fluido en el depósito hasta la admisión de la bomba [m] hf: Pérdida por fricción en la tubería de succión [m] hpv: Presión de vapor del líquido a la temperatura de bombeo [m]

Bombas y Motores de Fluido Motores de Fluido: También llamados turbinas, son dispositivos diseñados para extraer energía de un flujo de fluido y transformarla en otro tipo de energía (Mecánica, eléctrica, …). En este caso la potencia y la eficiencia de éste equipo se expresa de acuerdo con las siguientes expresiones: En este caso la eficiencia es la relación entre la potencia que sale del motor y la potencia transmitida por el fluido

Aplicaciones

“ Cuando vayan mal las cosas como a veces suelen ir… y procure tu camino, muchas cuestas por subir…descansar acaso debes, pero nunca desistir ya que al final del camino hay un hermoso tesoro por descubrir.” Anónimo