Prueba de Hipótesis (Test de Hipótesis)

Slides:



Advertisements
Presentaciones similares
DISEÑO DE EXPERIMENTOS EXPERIMENTOS DE COMPARACIÓN SIMPLE
Advertisements

DSITRIBUCION T DE STUDENT.
UNIVERSIDAD NACIONAL DE EDUCACIÓN Alma Máter del Magisterio Nacional
DISEÑO DE EXPERIMENTOS
BUENAS TARDES.
Tema 16: Contraste paramétrico de hipótesis I: Pruebas de contraste para un grupo. Pruebas de contraste para dos grupos: independientes o relacionados.
Tema 15. Contraste de hipótesis: Planteamiento de las hipótesis
Inferencia estadística
Pruebas de significancia para datos cualitativos
Pruebas de hipótesis: Media de una población © Pedro Juan Rodríguez Esquerdo Departamento de Matemáticas Recinto de Río Piedras Universidad de.
Contraste de Hipótesis
Estadística Teórica II
Inferencia estadística
Bioestadística Diplomado en Sanidad
} LISSET BÁRCENAS MONTERROZA
Inferencia Estadística
PRUEBAS DE HIPÓTESIS Mercedes de la Oliva.
La prueba U DE MANN-WHITNEY
Hipótesis Alternativa: H1: m  50 cm/seg
puede o no ser verdadero, relativo a una o más poblaciones.
Estimación por intervalos de confianza.
Supongamos que seleccionamos al azar a dos alumnos de dos cursos diferentes que llamaremos D8 y C1…
TABLAS DE CONTINGENCIA
METODOLOGÍA DE INVESTIGACIÓN Titular: Agustín Salvia
 La rectoría de una Universidad ha decidido seleccionar aleatoriamente una muestra de dos estudiantes de cada grupo para dar seguimiento a su nivel académico.
Análisis de varianza Análisis de varianza de un factor
Prueba de hipótesis Equivalencia entre la prueba de hipótesis y los intervalos de confianza Valor de probabilidad Valor de probabilidad unilateral Prueba.
Tests de hipótesis Los tres pasos básicos para testear hipótesis son
Inferencia Estadística
Unidad VI: PRUEBAS DE HIPOTESIS
Clases 4 Pruebas de Hipótesis
@ Angel Prieto BenitoMatemáticas 2º Bachillerato CS1 TIPOS DE ERRORES Tema 14.4 * 2º BCS.
1 Planteamiento del problema ¿Tenemos los humanos la capacidad de percibir si nos miran desde atrás? O, más exactamente: ¿Es defendible que existen otras.
Colegio Lamatepec Biología BI PARA TEMA UNO: ANALISIS ESTADISTICO.
Diseño Estadístico y Herramientas para la Calidad
Tema 17: Contraste paramétrico de hipótesis I: Pruebas de contraste para un grupo. Pruebas de contraste para dos grupos: independientes o relacionados.
@ Angel Prieto BenitoMatemáticas 2º Bachillerato CS1 CONTRASTE PARA LA MEDIA Tema 14.2 * 2º BCS.
INTERVALO DE CONFIANZA
Tema 7: Introducción a los contrastes de hipótesis
Universidad de Chile Facultad de Ciencias Químicas y Farmacéuticas
Distribuciones derivadas del muestreo
Fundamentos del contraste de hipótesis
ESTADISTICA TEMA 12.
Unidad V: Estimación de
Introducción La inferencia estadística es el procedimiento mediante el cual se llega a inferencias acerca de una población con base en los resultados obtenidos.
Capacidad de Proceso.
Clase 4a Significancia Estadística y Prueba Z
ESTIMACIÓN ESTADÍSTICA POR INTERVALO DE CONFIANZA
Unidad V: Estimación de
Capítulo 1. Conceptos básicos de la Estadística
INFERENCIA ESTADÍSTICA
Pruebas de hipótesis.
COMPROBACION DE HIPOTESIS SOBRE DOS PROMEDIOS Mario Briones L. MV, MSc 2005.
@ Angel Prieto BenitoMatemáticas 2º Bachillerato CS1 TEMA 15 * CONTRASTES DE HIPÓTESIS MATEMÁTICAS A. CS II.
Estimación y contraste de hipótesis
Capitulo 4 Análisis descriptivo inferencial: comparaciones múltiples
ESTIMACIÓN DE PARÁMETROS
INTERVALO DE CONFIANZA
Prueba de Hipótesis Una hipótesis estadística es un supuesto que se establece sobre las características de una distribución poblacional El estudio se plantea.
Distribuciones de Probabilidad
Distribución Binomial
Estadística para administradores
CONTRASTE DE HIPÓTESIS Dimensiones Largo275mm. 169 mm 2 Ancho175mm.49 mm 2 Alto175mm.49 mm 2 Peso16 Kg.1 Kg 2. SITUACIÓN PROBLEMA.
INFERENCIA ESTADÍSTICA
Metodología de la Investigación Cát. I
UNIDAD I.- Analisis 3.4 Prueba de Hipotesis.
RESUMEN DE LA DISTRIBUCION MUESTRAL PARA LA MEDIA MUESTRAL X INTERVALOS DE CONFIANZA PARA LA MEDIA POBLACIONAL  TIPO DE PROBLEMA ESPERANZA Y VARIANZA.
Estadística Inferencial
1 Estadística Aplicada Universidad Maimónides 2016 Clase 6 – Contraste de Hipótesis Pedro Elosegui.
ANALISIS DE VARIANZA.
Transcripción de la presentación:

Prueba de Hipótesis (Test de Hipótesis) Ing. Julio Carreto

Test de Hipótesis El contraste de hipótesis o test de hipótesis es una herramienta muy importante y ampliamente utilizada para comparar mediciones y tomar decisiones basadas en una probabilidad. Ing. Julio Carreto

Vamos a explicarlo con un ejemplo Test de Hipótesis Vamos a explicarlo con un ejemplo Ing. Julio Carreto

Test de Hipótesis Supongamos que en una huerta se cultivan tomates en un terreno donde hay sembradas 300 plantas de tomates, utilizando un determinado tipo de fertilizante. Ing. Julio Carreto

Test de Hipótesis El agricultor desea probar un nuevo fertilizante, basándose en la propaganda de una revista de horticultura. Ing. Julio Carreto

Test de Hipótesis Con este fin, en la siguiente cosecha utiliza el nuevo fertilizante en una de las plantas, en la que obtiene 12,5 Kg. de tomates. Ing. Julio Carreto

Test de Hipótesis ¿Cómo saber si el rendimiento en esta planta fue mejor porque se utilizó un nuevo fertilizante? Indudablemente necesitamos comparar este valor con el rendimiento de las otras plantas en las que se usó el fertilizante habitual. Ing. Julio Carreto

Test de Hipótesis Los rendimientos de distintas plantas seguramente fluctúan al azar. Ing. Julio Carreto

Test de Hipótesis Planta: 1 2 3 4 5 10,9 Kg. 12,1 Kg. 9,3 Kg. 10,1 Kg. Ing. Julio Carreto

Test de Hipótesis Planta: 6 7 ....ETC. 10,4 Kg. 11,7 Kg. Ing. Julio Carreto

Test de Hipótesis Es decir, no tenemos un único resultado con el fertilizante anterior sino muchos resultados que varían aleatoriamente, y es posible que algunos de esos resultados superen los 12,5 Kg. Ing. Julio Carreto

Test de Hipótesis Se necesita, entonces, un criterio para decidir si el nuevo fertilizante produce una mejora en el rendimiento. Ing. Julio Carreto

Test de Hipótesis Para resolver el problema, necesitamos hacer algunas suposiciones. Ing. Julio Carreto

Test de Hipótesis Primero: El conjunto de resultados de muchas plantas de tomate con el primer fertilizante constituye un universo conceptual de observaciones de distribución normal. Ing. Julio Carreto

Test de Hipótesis Hablamos de universo conceptual o hipotético porque es el universo o población de resultados que tendríamos con un número enormemente grande de plantas, con el mismo fertilizante y en las mismas condiciones. Ing. Julio Carreto

Test de Hipótesis s m Función de Gauss Kg. de Tomates Ing. Julio Carreto

Test de Hipótesis Segundo: Aunque el promedio y la desviación standard de una población hipotética, en general, no se conoce, el promedio y la desviación standard calculados con el rendimiento de las 299 plantas restantes, utilizando el fertilizante habitual, constituyen una buena estimación de la media y desviación standard del universo. Ing. Julio Carreto

Test de Hipótesis Vamos a suponer, entonces, que conocemos la media y desviación standard del universo y son los siguientes: Estimados con los rendimientos de 299 Plantas Ing. Julio Carreto

Test de Hipótesis Función de Gauss 0,8 Kg. 10,7 Kg. Kg. de Tomates Ing. Julio Carreto

Test de Hipótesis El único resultado obtenido con el nuevo fertilizante es de 12,5 Kg., lo cual supera el promedio del universo de resultados obtenidos con el fertilizante anterior. Ing. Julio Carreto

Test de Hipótesis Función de Gauss 0,8 Kg. 10,7 Kg. Kg. de Tomates Ing. Julio Carreto

Test de Hipótesis Si bien el promedio es 10,7 Kg., en la población hay resultados mas altos, y tal vez algunos iguales o mayores que 12,5 Kg. Ing. Julio Carreto

Test de Hipótesis ¿Se puede decir, entonces, que el nuevo fertilizante produce mejores resultados?. Ing. Julio Carreto

Test de Hipótesis Para tomar la decisión, conviene razonar de la siguiente manera: Ing. Julio Carreto

Test de Hipótesis Si en la población hipotética de resultados obtenidos con el primer fertilizante es común encontrar valores iguales o mayores que 12,5 Kg., entonces el resultado obtenido con el nuevo fertilizante no tiene nada de excepcional. Ing. Julio Carreto

Test de Hipótesis Afirmamos, entonces, que el nuevo fertilizante es igual que el anterior (No hay diferencia), y que el resultado obtenido se debió solamente a la fluctuación al azar de los resultados que obtendríamos con cualquier fertilizante. Ing. Julio Carreto

Test de Hipótesis Por otro lado, si en la población hipotética de resultados obtenidos con el primer fertilizante es poco común encontrar un valor como 12,5 Kg., quiere decir que el resultado del nuevo fertilizante sí es excepcional (es significativo) y por lo tanto tenemos razones para afirmar que es mejor que el anterior. Ing. Julio Carreto

Test de Hipótesis Esas son las dos hipótesis de valor opuesto que se plantean, una de las cuales es rechazada y la otra aceptada sobre la base de las probabilidades derivadas de la comparación con la distribución normal. Ing. Julio Carreto

Test de Hipótesis Formalmente, estas hipótesis son las siguientes: Ing. Julio Carreto

Test de Hipótesis Hipótesis Nula: No hay diferencia entre los fertilizantes (Las diferencias son nulas). El valor obtenido con el nuevo fertilizante se debe sólo a la fluctuación aleatoria de los rendimientos de las plantas. Ing. Julio Carreto

Test de Hipótesis Hipótesis Alternativa: El nuevo fertilizante es mejor que el anterior y por eso el rendimiento de la planta en la que se lo usó fue mas alto. Ing. Julio Carreto

Test de Hipótesis Hipótesis Alternativa: Hipótesis Nula: ¿Con cual me quedo? Hipótesis Alternativa: Hay diferencias significativas Hipótesis Nula: No hay diferencias Ing. Julio Carreto

Test de Hipótesis Para decidir entre ambas hipótesis, se calcula el estadístico Z, y se obtiene de la distribución normal standard la probabilidad de un valor (del estadístico Z) mayor o igual al calculado. Ing. Julio Carreto

Test de Hipótesis Si la probabilidad de un valor igual o mayor que el calculado es mayor que 0,05, se acepta la hipótesis nula a un nivel de significación de 0,05. Ing. Julio Carreto

Test de Hipótesis Esto quiere decir que hay una probabilidad mayor que 0,05 (mayor que 5 %) de obtener por casualidad (fluctuación aleatoria) un valor de Z tan grande como el calculado. Ing. Julio Carreto

Test de Hipótesis Si la probabilidad de un valor igual o mayor que el calculado es menor que 0,05, se rechaza la hipótesis nula a un nivel de significación de 0,05. Ing. Julio Carreto

Test de Hipótesis Es decir, la probabilidad de obtener en forma aleatoria un valor tan grande de Z es menor que 0,05 (menor que 5 %). En este caso se dice que el resultado obtenido con el nuevo fertilizante es significativo. Ing. Julio Carreto

Test de Hipótesis En nuestro ejemplo: Ing. Julio Carreto

Test de Hipótesis Entrando en la tabla de la distribución normal standard, obtenemos que la probabilidad de un Z igual o mayor que 2,25 es P = 0,0122 (1,22 %). Ing. Julio Carreto

Test de Hipótesis Quiere decir entonces que es muy poco probable obtener un rendimiento de 12,5 Kg. de tomates con el fertilizante habitual. Ing. Julio Carreto

Test de Hipótesis Rechazamos, entonces la Hipótesis Nula (Y aceptamos la Hipótesis Alternativa) a un nivel de significación de 0,05. Ing. Julio Carreto

Test de Hipótesis Ahora bien, para estar totalmente seguro y antes de invertir dinero en comprar una cantidad importante del fertilizante, el agricultor decide hacer una nueva prueba, y en la cosecha siguiente utiliza el nuevo producto en 10 plantas de tomate, con lo cual la prueba es mas segura. Ing. Julio Carreto

Test de Hipótesis Las hipótesis a contrastar son las mismas, pero el cálculo es algo diferente. Ing. Julio Carreto

Test de Hipótesis Ahora tenemos 10 resultados, cuyo promedio vamos a suponer que sea 11,5 Kg. Estos 10 resultados constituyen una muestra del universo de rendimientos individuales de las plantas. Ing. Julio Carreto

Test de Hipótesis Pero el promedio 11,5 Kg. es un elemento del universo de promedios muestrales (Promedios de 10 resultados) derivado del universo anterior, con el mismo promedio que este y con desviación standard: Ing. Julio Carreto

Test de Hipótesis como ya hemos visto. El estadístico Z es, entonces: Ing. Julio Carreto

Test de Hipótesis En la tabla de la distribución normal standard, la probabilidad de un Z igual o mayor que 3,16 es P = 0,0008 (0,08 %) aproximadamente. Ing. Julio Carreto

Test de Hipótesis La probabilidad, entonces, de obtener un rendimiento promedio en 10 plantas de 11,5 Kg. de tomates con el fertilizante habitual es prácticamente nula. Ing. Julio Carreto

Test de Hipótesis Rechazamos, entonces la Hipótesis Nula (Y aceptamos la Hipótesis Alternativa) a un nivel de significación de 0,0008. El nivel de confianza en las bondades del nuevo fertilizante, ahora, es mayor. Ing. Julio Carreto

Fin de la sección Ing. Julio Carreto