UNIVERSIDAD NACIONAL DE COLOMBIA

Slides:



Advertisements
Presentaciones similares
DUALIDAD ONDA - PARTÍCULA EN LA LUZ JUAN PABLO OSPINA LÓPEZ COD
Advertisements

MODELO ATÓMICO DE BOHR Javier Ricardo Velandia Cabra
Orígenes de la Física Moderna.
Unidad 1 Estructura atómica de la materia. Teoría cuántica
Efecto Fotoeléctrico María Fernanda Cifuentes Rojas Cod
Física Cuántica.
Física Cuántica.
Física Cuántica. ANTECEDENTES DE LA MECÁNICA CUÁNTICA - LA RADIACIÓN DEL CUERPO NEGRO Y LA HIPÓTESIS DE PLANCK. - EL EFECTO FOTOELÉCTRICO Y LA EXPLICACIÓN.
INTRODUCCIÓN A LA FÍSICA CUÁNTICA
EFECTO FOTOELECTRICO Historia - Descripción
2. Experimentos derivados de interacción radiación-materia
El efecto fotoelectrico
MODELO ATOMICO DE BORH.
Determinación de h/e. Efecto fotoeléctrico.
Mallory Paola Pulido Cruz Grupo 8 No. de lista: 32 Código:
Que es esa cosa llamada luz
MODELO ATÓMICOS DE BOHR
EFECTO FOTOELECTRICO Prof. Luis Torres.
Curso de Semiconductores
TEMA 01 Estructura de la materia
La Luz ¿Qué es la luz?.
FISICA CUANTICA FISICA CUÁNTICA.
NATURALEZA ELECTROMAGNETICA DE LA MATERIA
TEORÍAS ACERCA DE LA LUZ
FÍSICA CUÁNTICA.
Hospital Universitario Central de Asturias
Producción de corriente eléctrica a partir de LUZ
Física Experimental IV. Curso 2014 Clase 4 Página 1 Departamento de Física Fac. Ciencias Exactas - UNLP Determinación de h/e. Efecto fotoeléctrico. Heinrich.
Cuarta Sesión Radiación de un cuerpo negro Efecto fotoeléctrico.
Teoría cuántica y el efecto fotoeléctrico
EFECTO FOTOELECTRICO Presentado por : Erika Rubiano
ESTRUCTURA ATÓMICA PROPIEDADES PERIODICAS DE LOS ELEMENTOS
Profesora: Solange Araya R.
Ondas y Partículas.
EFECTO FOTOELECTRICO Historia - Descripción
Fundamentos de Física Moderna Radiación del Cuerpo Negro - Modelos cuánticos Andrés Felipe Rojas Ramírez G1E24Andres
FUNDAMENTOS DE FÍSICA MODERNA RAYOS X
Carlos Francisco Pinto Guerrero David Antonio Burbano Lavao
Compendio de Experimentos Clásicos de la Física Moderna ANDRÉS FABIÁN DUQUE RINCÓN GIE08ANDRES.
FÍSICA DE SEMICONDUCTORES Modelos Atómicos
Fundamentos de Física Moderna PROPIEDADES ONDULATORIAS DE LA MATERIA UNIVERSIDAD NACIONAL DE COLOMBIA SEDE BOGOTÁ PEDRO ANDREY CAÑÓN JIMÉNEZ G2E10PEDRO.
Compendio de experimentos clásicos de la física moderna Víctor Manuel López Mayorga E2G18victor 18/06/15.
Joan Camilo Poveda Fajardo G1E21Joan Louis Víctor de Broglie ( ) En su tesis doctoral Broglie propuso que se podrían unificar los comportamientos.
Compendio de Experimentos Clásicos de la Física Moderna DIEGO SEBASTIÁN MUÑOZ PINZÓN -G1E18DIEGO- JUNIO DE 2015.
Física de Semiconductores Clase 19 de Febrero Efecto Fotoeléctrico Cristiam Camilo Bonilla Angarita Cód:
FUNDAMENTOS DE FÍSICA MODERNA PERSONAJES
COMPENDIO DE EXPERIMENTOS CLÁSICOS DE LA FÍSICA MODERNA Nombre: Camilo Andrés Vargas Jiménez -G2E32Camilo- 09/06/2015.
Compendio de experimentos clásicos de la Física Moderna Juan Pablo Sánchez Grupo 1-31 Fundamentos de Física Moderna Universidad Nacional de Colombia.
MODELO ATÓMICO DE BOHR G1E15Oscar Oscar Javier Mora Gil
Fundamentos de Física Moderna Radiación del Cuerpo Negro (modelo cuántico) Sergio Toledo Cortes -G2E31- Junio/14/2015.
UN Sergio Toledo Cortes G2E FUNDAMENTOS DE FÍSICA MODERNA PERSONAJES.
 G2E22Daniel Daniel Alejandro Morales Manjarrez Fundamentos de física moderna.
Fundamentos de Física Moderna Modelos Atómicos
Compendio de Experimentos Clásicos de la Física Moderna Jonathan Alexis Saldarriaga Conde -G1E25Jhonatan- 09/06/2015.
Estructura de la materia
Jhoan Manuel Martínez Ruiz Universidad Nacional de Colombia.
ALFONSO PIMIENTA TRUJILLO
Física Cuántica Durante el siglo XIX, diversos físicos trataron de comprender el comportamiento de los átomos y moléculas a partir de las leyes físicas.
Compendio de Experimentos Clásicos de la Física Moderna
FÍSICA CUÁNTICA.
Compendio de Experimentos Clásicos de la Física Moderna FABIÁN ANDRÉS PEÑA GUERRERO G2E25FABIAN 19/06/15.
Compendio de Experimentos Clásicos de la Física Moderna
Compendio de Experimentos Clásicos de la Física Moderna
Física Cuántica.
Modelos atómicos hasta el actual
Tema 2. Física cuántica Resumen.
TEORÍA CUÁNTICA: la solución de Planck, el efecto fotoeléctrico y efecto Compton Xihomara Lizzet Casallas Cruz Grupo 9 N 7 D.I Física III.
PROFESOR JAIME VILLALOBOS VELASCO DEPARTAMENTO DE FÍSICA UNIVERSIDAD NACIONAL DE COLOMBIA KEVIN DANIEL BARAJAS VALEROG2N03.
Modelos Atómicos Por: Gustavo Muñoz López. Contenido  Antecedentes  Modelos atómicos.
¿Qué es la luz?. ¿Qué ves cada día al despertar y abrir los ojos? ¿Gracias a qué tipo de energía puedes ver? ¿Es importante la luz para la vida?
Transcripción de la presentación:

UNIVERSIDAD NACIONAL DE COLOMBIA EFECTO FOTOELCTRICO CAMILA GIL BELLO YAGIO MORENO GRUPO 4 UNIVERSIDAD NACIONAL DE COLOMBIA

EFECTO FOTO ELECTRICO En síntesis, este efecto fotoeléctrico consiste en la expulsión (o descarga) de electrones cuando una placa de metal, cargada con electricidad estática, es irradiada con luz. La teoría ondulatoria no explica satisfactoriamente este fenómeno porque la energía de una onda (continua) se extiende sobre la superficie del metal. Los cuantos de luz, sin embargo, actúan como partículas que interaccionan con los electrones del metal, los cuales absorben al cuanto de luz y, luego, son expulsados del metal. http://www.educaplus.org/play-112-Efecto-fotoel%C3%A9ctrico.html Imagen 1: efecto foto eléctrico, fuente: http://www.nodo50.org/ciencia_popular/articulos/Einstein5.htm En este link se podrá ver una animación del efecto foto eléctrico y como se comporta si variamos los niveles de energía

Para remover al electrón, de la superficie de una placa de metal u otro material sólido, se necesita una cierta cantidad mínima de energía la cual depende del material. Si la energía de un fotón es mayor que éste valor mínimo, el electrón es emitido de la superficie del metal. Es decir, el electrón es expulsado transportando una cierta cantidad de energía cinética debida a su propio movimiento. Estas y otras ideas de Einstein revolucionaron al conocimiento moderno de la humanidad. Con el concepto de la naturaleza dual de la luz, que se comporta como onda y como partícula, Einstein puso sólidas bases para el desarrollo de la física cuántica.  Hoy se sabe que el átomo exhibe una estructura cuántica, el electrón también tiene propiedades cuánticas. La teoría cuántica significa el entendimiento del átomo y permite una explicación de la estructura de la materia. El electrón es la primera de todas las demás partículas elementales y es de naturaleza cuántica dual (onda-partícula). El efecto fotoeléctrico, a su vez, es la base de varias tecnologías modernas.

Leyes de la emisión fotoeléctrica Para un metal y una frecuencia de radiación incidente dados, la cantidad de fotoelectrones emitidos es directamente proporcional a la intensidad de luz incidente. Para cada metal dado, existe una cierta frecuencia mínima de radiación incidente debajo de la cual ningún fotoelectrón puede ser emitido. Esta frecuencia se llama frecuencia de corte, también conocida como "Frecuencia Umbral". Por encima de la frecuencia de corte, la energía cinética máxima del fotoelectrón emitido es independiente de la intensidad de la luz incidente, pero depende de la frecuencia de la luz incidente. La emisión del fotoelectrón se realiza instantáneamente, independientemente de la intensidad de la luz incidente. Este hecho se contrapone a la teoría Clásica: la Física Clásica esperaría que existiese un cierto retraso entre la absorción de energía y la emisión del electrón, inferior a un nanosegundo.

Los cuantos de luz Contradiciendo a la noción prevaleciente en su época, de que la luz era solamente una onda electromagnética, Einstein propuso que la luz, en ciertas circunstancias, es una entidad continua y se comporta como una onda electromagnética pero, en otras circunstancias, se comporta como una entidad discontinua, es decir como partículas individuales (o discretas).  A estas partículas les llamó “cuantos de luz” porque transportan un “cuanto”, es decir, una cantidad (discreta) de energía. La cantidad de energía de un haz de luz está formada por la suma de las energías de esos “cuantos de luz”, llamados también “fotones”. Las teorías, como la electromagnética, en las cuales la energía está “cuantizada” se llaman teoría “cuánticas”. El antecedente inmediato de Einstein ocurrió en Alemania con los trabajos de Max Planck. Imagen 2: Quantum de luz, fuente: http://www.google.com.co/imgres

APLICACIONES Gracias al efecto fotoeléctrico se volvió posible el cine hablado, así como la transmisión de imágenes animadas (televisión). El empleo de aparatos fotoeléctricos permitió construir maquinarias capaces de producir piezas sin intervención alguna del hombre. Los aparatos cuyo funcionamiento se asienta en el aprovechamiento del efecto fotoeléctrico, controlan el tamaño de las piezas mejor de lo que podría hacerlo cualquier operario, permitiendo encender y apagar automáticamente la iluminación de calles, faroles,

CELULA FOTO ELECTRICA Una célula fotoeléctrica moderna consta de un balón de vidrio cuya superficie interna está revestida, en parte, de una capa fina de metal con pequeño trabajo de arranque (Figura a continuación). El cual es el Cátodo. A través de la parte transparente del balón, llamada ventana, la luz penetra al interior de ella. En el centro del balón existe una chapa metálica que es el ánodo y sirve para captar electrones fotoeléctricos. El ánodo se liga al polo positivo de una pila. Las células fotoeléctricas modernas reaccionan a la luz visible incluídos los rayos infrarrojos. Cuando la luz incide en el cátodo de la célula fotoeléctrica, en el circuito se produce una corriente eléctrica que acciona un relé apropiado. La combinación de la célula fotoeléctrica con un relé permite construir un sinfín de dispositivos capaces de ver, distinguir objetos, etc. Los aparatos de control automático de ingreso en el metro constituyen un ejemplo de tales sistemas.

Estos aparatos accionan una barrera que impide el avance del pasajero, en caso que el atraviese la faja luminosa sin haber previamente introducido el valor necesario en el monedero del dispositivo para pagar el metro. Los aparatos de este tipo vuelven posible la prevención de accidentes. Por ejemplo en las empresas industriales, una célula fotoeléctrica logra detener casi instantáneamente una prensa potente y de gran porte si por ejemplo, se diera la fatalidad de que un operario coloque su brazo en la zona de peligro. Imagen 3: Célula foto eléctrica de luz, fuente: http://fisica.laguia2000.com/energia/aplicacion-del-efecto-fotoelectrico

http://www.nodo50.org/ciencia_popular/articulos/Einstein5.htm http://www.google.com.co/imgres http://fisica.laguia2000.com/energia/aplicacion-del-efecto-fotoelectrico