Genética De Poblaciones

Slides:



Advertisements
Presentaciones similares
Herencia no Mendeliana Entre Mendel y el Proyecto Genoma
Advertisements

PROCESOS GENÉTICOS NO MENDELIANOS
Genética mendeliana 1º Bachillerato - CMC Bonifacio San Millán
TEMA 11. Genética mendeliana
Variabilidad, Evolución y Adaptación
Mecanismos de evolución:
Genética: Rama de la Biología que estudia la herencia de los caracteres Gen: cada uno de los fragmentos de ADN que contiene la información responsable.
Genética de poblaciones y selección natural
GENÉTICA Esta obra está bajo una licencia Attribution-NonCommercial-ShareAlike 3.0 Unported de Creative Commons. Para ver una copia de esta licencia, visite.
Genética Mendeliana y Sorteo de Alelos
Variabilidad y herencia
Herencia.
Dra Mariana Velázquez León
TEMA 6. Genética mendeliana
GÉNETICA POBLACIONAL Dra. María Teresa Lemus Valdés
GENÉTICA Y LA QUÍMICA DE LA HERENCIA
Unidad 11 GENÉTICA EVOLUCIÓN
Selección Natural La fuerza creativa que lleva al proceso de adaptación de los organismos a compaginar cambios en su entorno fisico y biológico.
Tema 15: Evolución Jorge Muñoz Aranda Biología-Curso de Acceso
La continuidad: HERENCIA
Unidad 0: “ Herencia y Variabilidad II”
GENETICA DE POBLACIONES
Principios básicos de la herencia
Base química de la herencia
GENETICA MENDELIANA.
Recordemos.
describe el estudio de la herencia al igual que ocurre en los seres humanos.
GENETICA MENDELIANA.
GENETICA MENDELIANA.
Cromosomas, Herencia Mendeliana y no Mendeliana
Carlos Felipe Hernández Rojas Colegio María Auxiliadora
LA GENETICA BASICA Experimentos de Mendel
Universidad de Panamá Escuela de Biología Departamento de genética Genética de Poblaciones Integrantes: Castellanos, Rebeca Robinson, Anine Robles, Jazmin.
Tema 30. Genética de Poblaciones
Genética Mendeliana y Sorteo de Alelos
Unidad temática 3 Genética de Poblaciones
Capítulo 8 Genética poblacional y selección natural.
¿Quién quiere ser Genético?
Dihibridismo Prof. Héctor Cisternas R..
HERENCIA Y MEDIO AMBIENTE
Codominancia. Series alélicas
VÍCTOR M. VITORIA es PROFESOR JANO
Tema 15: Evolución Jorge Muñoz Aranda Biología-Curso de Acceso
Genética Mendeliana. Las leyes de la herencia
Genetica Estudio de la Herencia.
Herencia no Mendeliana
Leyes de Mendel.
TEMA 14 LA HERENCIA DE LOS CARACTERES.
Genética de Poblaciones Equilibrio Hardy-Weinberg
La estructura poblacional está determinada por sus parámetros
TEMA 11. Genética mendeliana
Reproducción y herencia
Variabilidad y Herencia
Genética Estudia las características heredables y la forma como se transmiten de generación a generación.
Por: Nazly Sierra Grado: 10°1
Anneley usuga buelvas 11°. Leyes de Mendel  son un conjunto de reglas básicas sobre la transmisión por herencia de las características de los organismos.
Genética Mendeliana Objetivo: Manejar Conceptos de:
LEYES DE LA HERENCIA Experimentos de Mendel Leyes de Mendel
Leyes de Mendel son un conjunto de reglas básicas sobre la transmisión por herencia de las características de los organismos padres a sus hijos. Estas.
GENETICA MENDELIANA.
Dra. Rocío Sánchez Urbina
GENETICA MENDELIANA.
¿Siempre se cumplen los conceptos de Mendel sobre la herencia?
Valor: AMOR Objetivo: Comprender la sexualidad como resultado de un proceso biológico enmarcada dentro de procesos hereditarios, para desarrollar una actitud.
Dra. María Isabel Fonseca Qué es una población? “Es la comunidad de individuos que pueden potencialmente aparearse, en una determinada localidad”
CONCEPTOS ELEMENTALES DE GENÉTICA
Genética mendeliana. 2 Tema 13: Genética mendeliana.
TEMA 11. Genética mendeliana
Genética Mendeliana Objetivo: Manejar Conceptos de:
Genética De Poblaciones "Where Do We Come From? What Are We? Where Are We Going?" [1897] by Paul Gauguin.
Transcripción de la presentación:

Genética De Poblaciones "Where Do We Come From? What Are We? Where Are We Going?" [1897] by Paul Gauguin

Objetivos Entender las leyes de Hardy-Weinberg y su aplicación en el estudio de genética de poblaciones. Conocer los diferentes mecanismos en la herencia de carácteres en una población. Emplear las leyes de Hardy-Weinberg para hallar frecuencias alélicas, genotípicas y fenotípicas.

Definición: Estudio de la herencia colectiva y la variación en los organismos que habitan un área o región.

Genética de poblaciones La segregación y variabilidad en la población está gobernada por las Leyes Mendelianas. (Ley de dominancia, Ley de segregación y Ley de segregación independiente). Se asume que los individuos contribuyen igualmente al “pool genético” y tienen la misma oportunidad de reproducirse. La frecuencia de los genes y sus alelos tienden a mantenerse constante por generaciones. Se deduce que los cruces son al azar, no por selección.

[p(A)+q(a)]2 = (p2(AA) + 2pq(Aa) + q2(aa)) = 1 Ley de Hardy - Weinberg Establece que la frecuencia de un alelo y las frecuencias genotípica de una población tienden a permanecer igual por generaciones. Si ocurre algún cambio en la frecuencia indica que ha ocurrido evolución. [p(A)+q(a)]2 = (p2(AA) + 2pq(Aa) + q2(aa)) = 1 Donde: p(A) es la frecuencia del alelo A q(a) es la frecuencia del a

Ley de Hardy-Weinberg (cont.) Para sacar la frecuencia del alelo A p(A)= [p2+½(2pq)] / (p2 + 2pq + q2) Para sacar la frecuencia del alelo a q(a)= [q2+½(2pq)] / (p2 + 2pq + q2)

Predicción de frecuencias Para poder predecir las frecuencias genotípicas, frecuencia de un gen o frecuencia fenotípica de una población se puede hacer solo si se conoce cómo se hereda la característica a estudiarse.

Codominancia o dominancia incompleta Codominancia - los alelos producen efectos independientes en forma heterocigota Ej. Tipo de sangre AB Dominancia incompleta – hay expresión de dos alelos en un heterocigoto que lo hace diferente (de fenotipo intermedio)a los parentales homocigotos.

Dominancia incompleta

Codominancia (ejemplo): Antígenos de la serie M-N en los eritrocitos humanos: Población total: 200 personas 58 tipo M 101 tipo MN 41 tipo N Al expandir el binomio: [p(M)+q(N)]2 = 0.294LMLM+ 0.496LMLN + 0.209LNLN Si se multiplica cada una de las frecuencias x200, vemos que se acercan a los valores observados: .294x200=58.8 , .496x200=99.2 , .209x200=41.8 p(LM)= 58 + (½) 101 / 200 = 0.543 q(LN)= 41 + (½) 101 / 200 = 0.458

Dominancia Completa En este caso los individuos heterocigotos no se pueden diferenciar de los homocigotos dominantes. Ejemplo: Asumiendo que la presencia del antígeno Rh (Rh+) se debe a un alelo dominante ‘‘R’’ y que la ausencia del antígeno (Rh-) se debe al alelo recesivo ‘‘r’’. Un genotipo Rr y RR producen Rh+, mientras que rr produce Rh-.

Dominancia Completa (ejemplo): Se tomaron 100 personas al azar de una población y se obtuvieron: 25 Rh- (ausencia del antígeno Rh) 75 Rh+ (presencia del antígeno Rh) La frecuencia de r se estima: q2 (rr)= 25/100= .25 ; q (r) = √.25 = 0.5 Si: p+q = 1 1- q = p 1 – 0.5 = 0.5 La frecuencia estimada de los genotipos RR y Rr son: p2 (RR)= (0.5) 2= 0.25, 2pq(Rr)= 2(0.5)(0.5)= 0.50 Y el porcentaje de cada uno de ellos: 25 RR y 50 Rr.

Alelos Múltiples En el caso en que un gen en particular se encuentra en tres o más formas alélicas en una población. Para los genes con múltiples alelos las proporciones de la Ley H-W se expanden: (p+q+r)2= p2+q2+r2+2pq+2qr+2pr

Serie ABO en tipos de sangre Tipo de sangre Genotipo Antígenos presentes Frecuencia fenotípica observada Frecuencia fenotípica esperada A IAIA, IAi p2 + 2pr B IBIB, IBi q2 + 2qr AB IAIB 2pq O ii ninguno r2

Alelos Múltiples (ejemplo): Se encuestaron 600 estudiantes en el RUM entre los años 1975-1979 para saber su tipo de sangre, y obtuvieron los siguientes resultados: Fenotipo Observados Frecuencia fenotípica A 207 A =207/600=0.345 B 71 B =71/600=0.118 AB 21 AB =21/600=0.035 O 301 O =301/600=0.502 total 600 1.00

Frecuencias alélicas: r(i)=√ o =√0.502 =0.708 p(IA)=1-√B+O = 1- √0.118+0.502 = 0.213 q(IB)=1-√A+O = 1- √0.345+0.502 = 0.080 p2+2pr = 0.045 + 0.301=0.346 x 600 personas = 207.8 (TipoA) q2+2qr = 0.0064+0.113=0.119 x600 personas = 71.6 (TipoB) 2pq = 2[(0.213)(0.080)]=0.0340 x 600 personas = 20.4 (TipoAB) r2 = 0.502 x600 personas = 301.2 (TipoO)

Genes ligados a X Se refiere a genes que se encuentran en el cromosoma X. Un ejemplo lo es la condición de hemofilia, la cual se transmite por un gen recesivo (Xh). La frecuencia del alelo se estima utilizando la frecuencia del fenotipo en hombres (hemicigotos) en la población.

La Familia Romanov Rasputin

Genes ligados a X (ejemplo) 4% de los hombres tienen daltonismo (Xc) y 96% son no daltónicos (Xc+), por lo tanto: p(Xc+)=0.96 y q(Xc)=0.04. El genotipo y fenotipo esperado en mujeres puede ser calculado: q2(XcXc)= (0.04)2 =0.0016 ----------------------- 0.0016 daltónicas 2pq(Xc+ Xc)=2(0.96)(0.04)=0.0768 p2(Xc+ Xc+)=(0.96)2=0.9216 Cuando el número de mujeres afectadas es mucho menor que el de hombres afectados indica que está envuelto un gen ligado a X. 0.9984 normales

Condiciones necesarias para mantener el equilibrio de H-W Mutaciones Asumen que no hay mutaciones No es muy significativo ya que normalmente estas ocurren en el orden de 1x10-5 o 1x10-6. Migración Asumen que no hay migración. Si ocurre migración se pueden introducir nuevos genes a la población, puede ocurrir variabilidad.

Condiciones necesarias para mantener el equilibrio de H-W Selección Asume que no hay selección. Pero en la “vida real” algunos genotipos tienen mayor “preferencia” para reproducirse que otros. Deriva genética Asume que no hay cambios en la frecuencia alélica debido a fluctuación al azar. Asume que las poblaciones son grandes.

Condiciones necesarias para mantener el equilibrio de H-W Todos los individuos se cruzan. Todos producen la misma cantidad de hijos. Si una o todas estas condiciones ocurren en una población no hay evolución. Este no es el caso de las poblaciones en la naturaleza.

(M) Algunos geneticistas creen que un dedo anular corto es el resultado de un gene influenciado por el sexo del individuo. De acuerdo a esta teoría los varones poseen un gene dominante y las hembras un gene recesivo.

(W) (w) (R) (E) (e) (H) (h)