Chapter 5 The Second Law of Thermodynamics. Learning Outcomes ► Explicar conceptos clave relacionados con la segunda ley de la termodinámica, incluyendo.

Slides:



Advertisements
Presentaciones similares
Control en cascada.
Advertisements

Articles, nouns and contractions oh my!. The POWER of the article THE 1. There are four ways to express THE in Spanish 2. The four ways are: El La Los.
La tercera ley de la termodinámica
Profesor. Rafael Cabanzo Hernández
La Hora... Telling Time in Spanish. ¿Que hora es? The verb ser is used to express the time of day. Use es when referring to "one o'clock" and use son.
Telling Time.
-AR Verbs In Spanish, there are three classes (or conjugations) of verbs: those that end in –AR, those that end in –ER, and those that end in –IR. This.
Español 3 Sra. Carpinella.  Because each tense is used for very specific things, there are some key words that indicate whether you would use the imperfect.
THERE ARE 4 STATES OF MATTER 1. SOLIDS-THE MOVEMENT OF PARTICLES IN SOLIDS IS VERY SLOW. IN FACT, WE CAN’T SEE THEM MOVE…YET, THEY DO. SOLIDS HAVE A DEFINITE.
¿Qué haces en la escuela? Question words, objects, yo-go’s.
Tecnología y Estructura de Costos. Technologies u A technology is a process by which inputs are converted to an output. u E.g. labor, a computer, a projector,
Time Telling time is rather easy. You only need to know the numbers up to 59 to be able to tell the time.
Adverbs are words that describe how, when, and where actions take place. They can modify verbs, adjectives, and even other adverbs. In previous lessons,
Essential ?: How do I use these irregular verbs? How are they different than the verbs I already know?
LOS VERBOS REFLEXIVOS. WRITE: What is a reflexive verb? A reflexive verb describes when a person doing an action is also receiving the action.
It´s a Semantic content of a clause That means that any proposition (deep structure/meaning) can be expressed in different forms. Focus on Semantics.
¿Cuánto tiempo hace que…? You can ask when something happened in Spanish by using: ¿Cuándo + [preterit verb]…? ¿Cuándo llegaste a la clínica? When did.
Affirmative and Negative Words P. 31 Realidades 2.
THE VERB ESTAR Español 1 – Unidad 2 Lección 2. THE VERB ESTAR The verb estar means TO BE and is used to indicate LOCATION as well as to say how people.
DIFERENCE: Diesel Cycle vrs. Otto Cycle The diesel engines are often slow crankshaft speeds of 100 to 750 rpm, while gasoline engines work from 2,500 to.
Sources of Renewable Energy
6 de febrero de 2017.
Tear out workbook pages: 59-70
Balances de entropía para sistemas abiertos
PROCESOS REVERSIBLES E IRREVERSIBLES
EQUILIBRIUM OF A PARTICLE IN 2-D Today’s Objectives: Students will be able to : a) Draw a free body diagram (FBD), and, b) Apply equations of equilibrium.
Las clases de Sra. Schwarz Realidades 1
Notes #20 Notes #20 There are three basic ways to ask questions in Spanish. Can you guess what they are by looking at the photos and photo captions on.
8 de febrero de 2017.
El imperfecto Los verbos -AR Ch. 3 - Imperfect -AR Verbs.
Conjunctions are words or phrases that connect other words and clauses in sentences. Certain conjunctions commonly introduce adverbial clauses, which describe.
ENTROPIA TERMODINÁMICA II.
JUGAR to play a sport or a game
ANTE TODO Adverbs are words that describe how, when, and where actions take place. They can modify verbs, adjectives, and even other adverbs. In previous.
POSSESSIVE ADJECTIVES
First Grade Dual High Frequency Words
¿Qué hora es?.
THE ATMOSPHERE.
GRAPHIC MATERIALS 1. GRAPHIC MATERIALS. GRAPHIC MATERIALS 1. GRAPHIC MATERIALS.
Youden Analysis. Introduction to W. J. Youden Components of the Youden Graph Calculations Getting the “Circle” What to do with the results.
P HASE DIAGRAMS OF PURE SUBSTANCE Roberto Carlos García Zúñiga.
JUNIOR MOISES ARAUJO MARCACUZCO C. SEGÚN SU DIRECCION DE FLUJO Unsteady flow simulations of Pelton turbine at different rotational speeds Minsuk.
Control de Gestión en las Entidades Públicas
LEY DE CHARLES V - T.
Introducción a las finanzas de los sistemas de agua potables
Los números.
Meteorology: the study of the entire atmosphere, including weather.
Quasimodo: Tienes que hacer parte D de la tarea..
Magnitudes vectoriales
Affirmative & Negative Words
El subjuntivo en cláusulas adverbiales:
Apuntes: La hora Lección 1: Hola, ¿Qué tal?.
ANTE TODO Adverbs are words that describe how, when, and where actions take place. They can modify verbs, adjectives, and even other adverbs. In previous.
How to Conjugate… SPANISH VERBS.
Kindergarten Spanish High Frequency Words
Magnitudes vectoriales
ZERO CONDITIONAL. What is zero conditional? Zero conditional is a structure used to talk about general truths, that is, things that always happen under.
UNIT 1: The structure of matter: FQ3eso_U1_3: Electron configurations
Changes in the States of Matter
Los adjetivos demostrativos Notes #16 What is a demonstrative adjective in English? Demonstrative adjectives in English are simply the words: THISTHESE.
Antes de empezar In English, write 5 things you would like to do when you finish High School. 1) 2) 3) 4) 5)
El Subjuntivo Expressions of Doubt
Gustar, Interesar, Aburrir
El agua.
Antes de empezar contesta las preguntas sólo escribe las respuestas
CONSEQUENCES OF ACCIDENTS AT WORK GLORIANA RUIZ. CONSEQUENCE OF WORKING WITHOUT GLOVES 1. A person can have side effects if he sprays a plant with chemicals.
Welcome to PowerPoint gdskcgdskfcbskjc. Designer helps you get your point across PowerPoint Designer suggests professional designs for your presentation,
Globalization Politics and the preservation of nation state.
Changes of State Unit 1: Matter.
Las Preguntas (the questions) Tengo una pregunta… Sí, Juan habla mucho con el profesor en clase. No, Juan no habla mucho en clase. s vo s vo Forming.
Transcripción de la presentación:

Chapter 5 The Second Law of Thermodynamics

Learning Outcomes ► Explicar conceptos clave relacionados con la segunda ley de la termodinámica, incluyendo declaraciones alternativas de la segunda ley, el proceso internamente reversible y la escala de temperatura de Kelvin. ►Enumere varias irreversibilidades importantes.

Learning Outcomes, cont. ►Evalúe el rendimiento de los ciclos de potencia y los ciclos de refrigeración y bomba de calor utilizando, según corresponda, los corolarios de las Secs y 5.7.2, junto con las ecuaciones 5,9-5,11. ► Describe el ciclo de Carnot. ►Aplicar la desigualdad de Clausius expresada por la Ec

Aspects of the Second Law of Thermodynamics ►De la conservación de los principios de masa y energía, la masa y la energía no pueden ser creadas o destruidas. ►Para un proceso, la conservación de los principios de masa y energía indica la disposición de la masa y la energía, pero no inferir si el proceso puede realmente ocurrir. ►La segunda ley de la termodinámica proporciona el principio guía para saber si un proceso puede ocurrir.

Aspects of the Second Law of Thermodynamics ►predicción de la dirección de los procesos. estableciendo condiciones de equilibrio. ► determinando el mejor rendimiento teórico de ciclos, motores y otros dispositivos. ►evaluando cuantitativamente los factores que impiden alcanzar el mejor nivel de rendimiento teórico. La segunda ley de la termodinámica tiene muchos aspectos, que al principio pueden parecer diferentes en especie a los de la conservación de los principios de masa y energía. Entre estos aspectos se encuentran:

Aspects of the Second Law of Thermodynamics ►definiendo una escala de temperatura independiente de las propiedades de cualquier sustancia termométrica. ►desarrollo de medios para evaluar propiedades tales como u y h en términos de propiedades que se obtienen más fácilmente experimentalmente. Los científicos y los ingenieros han encontrado usos adicionales de la segunda ley y deducciones de la misma. También se ha utilizado en filosofía, economía y otras disciplinas muy alejadas de la termodinámica de la ingeniería. Other aspects of the second law include:

Second Law of Thermodynamics Alternative Statements ►No hay una declaración simple que capture todos los aspectos de la segunda ley. Varias formulaciones alternativas de la segunda ley se encuentran en la literatura técnica. Tres prominentes son: ►Clausius Statement ►Kelvin-Planck Statement ►Entropy Statement

Second Law of Thermodynamics Alternative Statements ►The focus of Chapter 5 is on the Clausius and Kelvin-Planck statements. ►The Entropy statement is developed and applied in Chapter 6. ►Like every physical law, the basis of the second law of thermodynamics is experimental evidence. While the three forms given are not directly demonstrable in the laboratory, deductions from them can be verified experimentally, and this infers the validity of the second law statements.

Clausius Statement of the Second Law Es imposible que cualquier sistema funcione de tal manera que el único resultado sería una transferencia de energía por calor desde un enfriador a un cuerpo más caliente.

Thermal Reservoir ►Un depósito térmico es un sistema que siempre permanece a temperatura constante aunque la energía se agrega o se elimina mediante transferencia de calor. ► Tal sistema es aproximado por la atmósfera de la tierra, los lagos y los océanos, y un bloque grande de un sólido tal como cobre.

Kelvin-Planck Statement of the Second Law Es imposible que cualquier sistema funcione en un ciclo termodinámico y suministre una cantidad neta de energía por trabajo a su entorno mientras recibe energía por transferencia de calor desde un solo depósito térmico.

Entropy Statement of the Second Law ►La masa y la energía son ejemplos familiares de amplias propiedades utilizadas en la termodinámica. ► La entropía es otra importante propiedad extensa. La forma en que se evalúa y aplica la entropía se detalla en el capítulo 6. ► A diferencia de la masa y la energía, que se conservan, la entropía se produce dentro de los sistemas siempre que las no idealidades como la fricción están presentes. La declaración de entropía es: Es imposible que cualquier sistema funcione de tal manera que la entropía sea destruida.

Irreversibilities ►Uno de los usos importantes de la segunda ley de la termodinámica en la ingeniería es determinar el mejor rendimiento teórico de los sistemas. ►Al comparar el rendimiento real con el mejor rendimiento teórico, a menudo se pueden tener ideas sobre el potencial para mejorar el rendimiento. ►El mejor rendimiento teórico se evalúa en términos de procesos idealizados. ►Los procesos reales se distinguen de tales procesos idealizados por la presencia de no- idealidades-llamadas irreversibilidades.

Irreversibilities Commonly Encountered in Engineering Practice ►Transferencia de calor a través de una diferencia de temperatura finita ►Expansión no restringida de un gas o líquido a una presión más baja ►Reacción química espontánea ►Mezcla espontánea de materia en diferentes composiciones o estados ►Fricción - fricción deslizante así como fricción en el flujo de fluidos

Irreversibilities Commonly Encountered in Engineering Practice ►Flujo de corriente eléctrica a través de una resistencia ►Magnetización o polarización con histéresis ►Deformación no elástica Todos los procesos reales implican efectos tales como los enumerados, incluyendo procesos naturales y aquellos que involucran dispositivos que construimos - desde los mecanismos más simples hasta las plantas industriales más grandes

Irreversible and Reversible Processes ►dentro del sistema, o ►dentro de su entorno (generalmente el entorno inmediato), o ►dentro del sistema y sus alrededores. During a process of a system, irreversibilities may be present:

Irreversible and Reversible Processes ►A process is irreversible when irreversibilities are present within the system and/or its surroundings. All actual processes are irreversible. ►A process is reversible when no irreversibilities are present within the system and its surroundings. This type of process is fully idealized.

Irreversible and Reversible Processes ►A process is internally reversible when no irreversibilities are present within the system. Irreversibilities may be present within the surroundings, however. An internally reversible process is a quasiequilibrium process (see Sec ).

Example: Internally Reversible Process Water contained within a piston-cylinder evaporates from saturated liquid to saturated vapor at 100 o C. As the water evaporates, it passes through a sequence of equilibrium states while there is heat transfer to the water from hot gases at 500 o C. ►Such spontaneous heat transfer is an irreversibility in its surroundings: an external irreversibility. ►For a system enclosing the water there are no internal irreversibilities, but

Analytical Form of the Kelvin-Planck Statement For any system undergoing a thermodynamic cycle while exchanging energy by heat transfer with a single thermal reservoir, the net work, W cycle, can be only negative or zero – never positive: W cycle ≤ 0 < 0: Internal irreversibilities present = 0: No internal irreversibilities single reservoir (Eq. 5.3) NO!

Applications to Power Cycles Interacting with Two Thermal Reservoirs For a system undergoing a power cycle while communicating thermally with two thermal reservoirs, a hot reservoir and a cold reservoir, (Eq. 5.4) the thermal efficiency of any such cycle is

Applications to Power Cycles Interacting with Two Thermal Reservoirs By applying the Kelvin-Planck statement of the second law, Eq. 5.3, three conclusions can be drawn: 1. The value of the thermal efficiency must be less than 100%. Only a portion of the heat transfer Q H can be obtained as work and the remainder Q C is discharged by heat transfer to the cold reservoir. Two other conclusions, called the Carnot corollaries, are:

Carnot Corollaries 1. The thermal efficiency of an irreversible power cycle is always less than the thermal efficiency of a reversible power cycle when each operates between the same two thermal reservoirs. A cycle is considered reversible when there are no irreversibilities within the system as it undergoes the cycle and heat transfers between the system and reservoirs occur reversibly. 2. All reversible power cycles operating between the same two thermal reservoirs have the same thermal efficiency.

Applications to Refrigeration and Heat Pump Cycles Interacting with Two Thermal Reservoirs For a system undergoing a refrigeration cycle or heat pump cycle while communicating thermally with two thermal reservoirs, a hot reservoir and a cold reservoir, (Eq. 5.5) the coefficient of performance for the refrigeration cycle is (Eq. 5.6) and for the heat pump cycle is

Applications to Refrigeration and Heat Pump Cycles Interacting with Two Thermal Reservoirs By applying the Kelvin-Planck statement of the second law, Eq. 5.3, three conclusions can be drawn: 1. For a refrigeration effect to occur a net work input W cycle is required. Accordingly, the coefficient of performance must be finite in value. Two other conclusions are:

Applications to Refrigeration and Heat Pump Cycles Interacting with Two Thermal Reservoirs 1. The coefficient of performance of an irreversible refrigeration cycle is always less than the coefficient of performance of a reversible refrigeration cycle when each operates between the same two thermal reservoirs. All three conclusions also apply to a system undergoing a heat pump cycle between hot and cold reservoirs. 2. All reversible refrigeration cycles operating between the same two thermal reservoirs have the same coefficient of performance.

Kelvin Temperature Scale Consider systems undergoing a power cycle and a refrigeration or heat pump cycle, each while exchanging energy by heat transfer with hot and cold reservoirs: (Eq. 5.7) The Kelvin temperature is defined so that

Kelvin Temperature Scale ►In words, Eq. 5.7 states: When cycles are reversible, and only then, the ratio of the heat transfers equals a ratio of temperatures on the Kelvin scale, where T H is the temperature of the hot reservoir and T C is the temperature of the hot reservoir. ►As temperatures on the Rankine scale differ from Kelvin temperatures only by the factor 1.8: T ( o R)=1.8 T (K), the T’s in Eq. 5.7 may be on either scale of temperature. Equation 5.7 is not valid for temperatures in o C or o F, for these do not differ from Kelvin temperatures by only a factor: T ( o C) = T (K) – T ( o F) = T (R) –

Maximum Performance Measures for Cycles Operating between Two Thermal Reservoirs 1. The thermal efficiency of an irreversible power cycle is always less than the thermal efficiency of a reversible power cycle when each operates between the same two thermal reservoirs. Previous deductions from the Kelvin-Planck statement of the second law include: 2. The coefficient of performance of an irreversible refrigeration cycle is always less than the coefficient of performance of a reversible refrigeration cycle when each operates between the same two thermal reservoirs. 3. The coefficient of performance of an irreversible heat pump cycle is always less than the coefficient of performance of a reversible heat pump cycle when each operates between the same two thermal reservoirs.

Maximum Performance Measures for Cycles Operating between Two Thermal Reservoirs It follows that the maximum theoretical thermal efficiency and coefficients of performance in these cases are achieved only by reversible cycles. Using Eq. 5.7 in Eqs. 5.4, 5.5, and 5.6, we get respectively: (Eq. 5.9) Power Cycle: (Eq. 5.10) Refrigeration Cycle: (Eq. 5.11) Heat Pump Cycle: where T H and T C must be on the Kelvin or Rankine scale.

Example: Power Cycle Analysis A system undergoes a power cycle while receiving 1000 kJ by heat transfer from a thermal reservoir at a temperature of 500 K and discharging 600 kJ by heat transfer to a thermal reservoir at (a) 200 K, (b) 300 K, (c) 400 K. For each case, determine whether the cycle operates irreversibly, operates reversibly, or is impossible. Solution: To determine the nature of the cycle, compare actual cycle performance (  ) to maximum theoretical cycle performance (  max ) calculated from Eq. 5.9

Example: Power Cycle Analysis Actual Performance: Calculate  using the heat transfers: Maximum Theoretical Performance: Calculate  max from Eq. 5.9 and compare to  : (a) (b) (c) Reversibly 0.4 = 0.4 Impossible 0.4 > 0.2 Irreversibly 0.4 < 0.6   max

Carnot Cycle ►The Carnot cycle provides a specific example of a reversible cycle that operates between two thermal reservoirs. Other examples are provided in Chapter 9: the Ericsson and Stirling cycles. ►In a Carnot cycle, the system executing the cycle undergoes a series of four internally reversible processes: two adiabatic processes alternated with two isothermal processes.

Carnot Power Cycles The p - v diagram and schematic of a gas in a piston-cylinder assembly executing a Carnot cycle are shown below:

Carnot Power Cycles The p - v diagram and schematic of water executing a Carnot cycle through four interconnected components are shown below: In each of these cases the thermal efficiency is given by (Eq. 5.9)

Carnot Refrigeration and Heat Pump Cycles ►If a Carnot power cycle is operated in the opposite direction, the magnitudes of all energy transfers remain the same but the energy transfers are oppositely directed. ►Such a cycle may be regarded as a Carnot refrigeration or heat pump cycle for which the coefficient of performance is given, respectively, by (Eq. 5.10) Carnot Refrigeration Cycle: (Eq. 5.11) Carnot Heat Pump Cycle:

Clausius Inequality ►The Clausius inequality considered next provides the basis for developing the entropy concept in Chapter 6. ►The Clausius inequality is applicable to any cycle without regard for the body, or bodies, from which the system undergoing a cycle receives energy by heat transfer or to which the system rejects energy by heat transfer. Such bodies need not be thermal reservoirs.

Clausius Inequality ►The Clausius inequality is developed from the Kelvin-Planck statement of the second law and can be expressed as: ∫ (Eq. 5.13) where ∫ indicates integral is to be performed over all parts of the boundary and over the entire cycle. subscript indicates integrand is evaluated at the boundary of the system executing the cycle. b

Clausius Inequality ►The Clausius inequality is developed from the Kelvin-Planck statement of the second law and can be expressed as: ∫ (Eq. 5.13) The nature of the cycle executed is indicated by the value of  cycle :  cycle = 0 no irreversibilities present within the system  cycle > 0 irreversibilities present within the system  cycle < 0 impossible Eq. 5.14

Example: Use of Clausius Inequality A system undergoes a cycle while receiving 1000 kJ by heat transfer at a temperature of 500 K and discharging 600 kJ by heat transfer at (a) 200 K, (b) 300 K, (c) 400 K. Using Eqs and 5.14, what is the nature of the cycle in each of these cases? Solution: To determine the nature of the cycle, perform the cyclic integral of Eq to each case and apply Eq to draw a conclusion about the nature of each cycle.

Example: Use of Clausius Inequality Applying Eq to each cycle: ∫ (b)  cycle = 0 kJ/K = 0 (a)  cycle = +1 kJ/K > 0 Irreversibilities present within systemNo irreversibilities present within system (c)  cycle = –0.5 kJ/K < 0 Impossible