Apuntes de Matemáticas 3º ESO

Slides:



Advertisements
Presentaciones similares
PROBLEMAS DE PROGRESIONES
Advertisements

Apuntes de Matemáticas 3º ESO
@ Angel Prieto BenitoApuntes de Matemáticas 3º ESO1 U.D. 13 * 3º ESO E.AP. FUNCIONES LINEALES Y CUADRÁTICAS.
Apuntes Matemáticas 2º ESO
Apuntes de Matemáticas 1
Apuntes Matemáticas 2º ESO
PROPORCIONALIDAD U. D. 3 * 4º ESO E. Angel Prieto Benito
Apuntes de Matemáticas 3º ESO
Apuntes Matemáticas 2º ESO
Apuntes de Matemáticas 3º ESO
SISTEMAS DE ECUACIONES
Apuntes 1º Bachillerato CT
Matemáticas 1º Bachillerato CT
PROPORCIONALIDAD U.D. 3 * 3º ESO Angel Prieto Benito
Apuntes de Matemáticas 3º ESO
Apuntes de Matemáticas 3º ESO
U.D. 13 * 3º ESO E.AP. FUNCIONES LINEALES Y CUADRÁTICAS
Apuntes de Matemáticas 3º ESO
Apuntes Matemáticas 2º ESO
ESTADÍSTICA UNIDIMENSIONAL
ECUACIONES Y SISTEMAS U. D. 6 * 4º ESO E. Angel Prieto Benito
PROPORCIONALIDAD U. D. 3 * 4º ESO E. Angel Prieto Benito
Apuntes de Matemáticas 3º ESO
Apuntes Matemáticas 2º ESO
Apuntes de Matemáticas 3º ESO
U.D. 12 * 3º ESO E.AC. FUNCIONES LINEALES Y CUADRÁTICAS
SISTEMAS DE ECUACIONES
Apuntes Matemáticas 2º ESO
Apuntes de Matemáticas 3º ESO
ECUACIONES U. D. 4 * 4º ESO E. Angel Prieto Benito
RESOLUCIÓN DE SISTEMAS
Apuntes de Matemáticas 1
INTEGRALES U.D. 7 * 2º Angel Prieto Benito
Apuntes de Matemáticas 2º ESO
Apuntes de Matemáticas 3º ESO
Apuntes de Matemáticas 3º ESO
Apuntes de Matemáticas 2º ESO
Apuntes de Matemáticas 3º ESO
Matemáticas 2º Bachillerato CS
Apuntes Matemáticas 1º ESO
Apuntes de Matemáticas 3º ESO
DETERMINANTES U.D. 2 * 2º Angel Prieto Benito
MATRICES U.D. 1 * 2º Angel Prieto Benito
Apuntes de Matemáticas 2º ESO
Apuntes de Matemáticas 3º ESO
Apuntes de Matemáticas 3º ESO
Apuntes de Matemáticas 3º ESO
Apuntes de Matemáticas 3º ESO
Apuntes Matemáticas 2º ESO
U.D. 12 * 3º ESO E.AC. FUNCIONES LINEALES Y CUADRÁTICAS
U.D. 12 * 3º ESO E.AC. FUNCIONES LINEALES Y CUADRÁTICAS
RADICALES Y LOGARITMOS
Apuntes Matemáticas 1º ESO
Apuntes de Matemáticas 3º ESO
ECUACIONES U. D. 4 * 4º ESO E. Angel Prieto Benito
Apuntes de Matemáticas 3º ESO
Apuntes Matemáticas 2º ESO
Apuntes de Matemáticas 3º ESO
Apuntes Matemáticas 2º ESO
Matemáticas Aplicadas CS I
Progresiones. La esencia de la matemática no es hacer las cosas simples complicadas, sino hacer las cosas complicadas simples (S. Gudder) Montoya.
SISTEMAS DE ECUACIONES
Matemáticas 2º Bachillerato C.T.
Apuntes de Matemáticas 3º ESO
Apuntes de Matemáticas 3º ESO
Apuntes de Matemáticas 3º ESO
Apuntes de Matemáticas 3º ESO
Matemáticas Aplicadas CS I
PROGRESIONES GEOMÉTRICAS (p.g)
Apuntes de Matemáticas 3º ESO
Transcripción de la presentación:

Apuntes de Matemáticas 3º ESO U.D. 7 * 3º ESO E.AC. PROGRESIONES @ Angel Prieto Benito Apuntes de Matemáticas 3º ESO

TRES PROBLEMAS CON P.A. Y P.G. U.D. 7.6 * 3º ESO E.AC. TRES PROBLEMAS CON P.A. Y P.G. @ Angel Prieto Benito Apuntes de Matemáticas 3º ESO

Apuntes de Matemáticas 3º ESO Problema_1 Mónica le dice a Carlos: “Tu me das 0,01 € un día, 0,02 € otro día, 0,04 € otro día, y así sucesivamente durante un mes. A cambio yo te doy 1 € un día, 2 € otro día, 3 € otro día, y así hasta un mes. ¿Aceptas?. “ Carlos enseguida aceptó, pues parecía muy evidente que a cambio de muy pocos euros se iba a llevar algunos cientos de euros. ¿Quien crees que salió perdiendo?. RESOLUCIÓN: Lo que da Mónica a Carlos: ( an )= 1 , 2 , 3 , 4 , 5, … Es una PA, donde a1 = 1 , d = 1 y n = 30 Lo que da Carlos a Mónica: ( an )= 0,01 , 0,02 , 0,04 , 0,08, … Es una PG, donde a1 = 0,01 , r = 2 y n = 30 @ Angel Prieto Benito Apuntes de Matemáticas 3º ESO

Apuntes de Matemáticas 3º ESO Para hallar la suma de todo lo que le da Mónica a Carlos y viceversa necesitamos saber el valor del último término, lo que se dan mutuamente el último día. Lo que da Mónica a Carlos el último día: a30 = a1 + (n-1).d = 1 + (30 – 1).1 = 1 + 29 = 30 € Lo que da Carlos a Mónica el último día: n-1 30-1 a30 = a1 . r = 0,01. 2 = 5.368.709 € Veamos ahora la suma de ambos: Lo que da Mónica a Carlos en total: S = (a1 + a30 ). 15 = (1+30).15 = 31.15 = 465 € Lo que da Carlos a Mónica en total: S = (a1 - a30 . r ) / ( 1-r) = (0,01 – 5368709.2) / (1- 2) = 10.737.418 € @ Angel Prieto Benito Apuntes de Matemáticas 3º ESO

Apuntes de Matemáticas 3º ESO Problema_2 Al pagar una motocicleta, nos ofrecen la posibilidad de hacerlo en cómodos plazos mensuales (letras). El 1º mes pagamos 100 € y cada uno de los once meses restantes el 5% más que el mes anterior. ¿Qué tipo de progresión es?. ¿Qué pagaremos el último mes?. ¿Cuáles han sido los intereses si la motocicleta costaba 1200 €?. Resolución: a1 = 100 a2 = 100 + 5%(100) = 100 + 5 = 105 a3 = 105 + 5%(105) = 105 + 5,25 = 110,25 Vemos que no es una PA pues la diferencia no es constante. 105 – 100 <> 110,25 – 105 a2 = a1 r  r = a2 / a1 = 105 /100 = 1,05 a3 = a2 r  110,25 = 105.1,05  110,25 = 110,25 Vemos que es una PG de razón 1,05 @ Angel Prieto Benito Apuntes de Matemáticas 3º ESO

Apuntes de Matemáticas 3º ESO … Resolución: El último mes habremos pagado por la letra: a12 = a1 . 1,0511 = 100 . 1,71 = 171 € En total habremos pagado por la motocicleta: S = a1 .(1 – rn)/ (1 – r) = 100 .(1 – 1,0512)/ (1 – 1,05) = = 100 ( 1 – 1,7958)/(– 0,05) = – 79,58 / (– 0,05) = 1592 € Intereses abonados: 1592 – 1200 = 392 € @ Angel Prieto Benito Apuntes de Matemáticas 3º ESO

Apuntes de Matemáticas 3º ESO Problema_3 En un depósito de agua se produce una grieta que aumenta al paso de los días de modo que perdemos 5 litros el primer día, 10 el segundo día, 20 el tercer día, y así sucesivamente. Al mismo tiempo al depósito le llegan 100 litros el primer día, 200 litros el segundo día, 300 litros el tercer día, y así sucesivamente. Al cabo de 10 días, ¿habrá agua en el depósito, inicialmente vacío?. ¿Y a los 12 días?. RESOLUCIÓN: Lo que llega al depósito: ( an )= 100 , 200 , 300 , 400 , 500, … Es una PA, donde a1 = 100 , d = 100 y n = 10 ( días) Lo que pierde el depósito: ( an )= 5 , 10 , 20 , 40, 80, … Es una PG, donde a1 = 5 , r = 2 y n = 10 ( días) @ Angel Prieto Benito Apuntes de Matemáticas 3º ESO

Apuntes de Matemáticas 3º ESO Para hallar la suma de todo lo que llega y de todo lo que pierde, necesitamos saber el valor del último término, lo que llega y lo que pierde el último día. Lo que llega el último día: a10 = a1 + (n-1).d = 100 + (10 – 1).100 = 100 + 900 = 1.000 litros Lo que pierde el último día: n-1 10-1 a10 = a1 . r = 5. 2 = 5 . 512 = 2.560 litros Veamos ahora la suma de ambos: Lo que llega en total: S = (a1 + a10 ). 5 = (100+1000).5 = 1100 . 5 = 5.500 litros Lo que pierde en total: S = (a1 - a10 . r ) / ( 1-r) = (5 – 2560.2) / (1- 2) = 5.115 litros @ Angel Prieto Benito Apuntes de Matemáticas 3º ESO

Apuntes de Matemáticas 3º ESO A los 10 días tendremos agua, pues es mayor la cantidad suministrada que la perdida. Veamos al cabo de 12 días: Lo que llega el último día: a12 = a1 + (n-1).d = 100 + (12 – 1).100 = 100 + 1100 = 1.200 litros Lo que pierde el último día: n-1 12-1 a12 = a1 . r = 5. 2 = 5 . 2048 = 10.240 litros Veamos ahora la suma de ambos: Lo que llega en total: S = (a1 + a10 ). 5 = (100+1200).5 = 1300 . 5 = 6.500 litros Lo que pierde en total: S = (a1 - a12 . r ) / ( 1-r) = (5 – 10240.2) / (1- 2) = 20.475 litros @ Angel Prieto Benito Apuntes de Matemáticas 3º ESO