Haciendo el modelo depredador presa más realista

Slides:



Advertisements
Presentaciones similares
DÍA DA PAZ: O Poder dos xestos..
Advertisements

CAPACITACIÓN PARA LA APLICACIÓN Y CUMPLIMIENTO DE LA NORMATIVA
5. UNITATEA: INGURUNE HOTZAK, BEROAK ETA EPELAK
Necesidades de Interconexión y Particularidades de Operación
Ondas.
REFLEXIÓN Y REFRACCIÓN, LEY DE SNELL
INERCIA DE ROTACIONES.
1. Que es Cosmologia? 1.1 Horizontes
DEPARTAMENTO DE CIENCIAS ECONÓMICAS, ADMINISTRATIVAS Y DE COMERCIO CARRERA DE ADMINISTRACIÓN TURÍSTICA Y HOTELERA TRABAJO DE TITULACIÓN, PREVIO A LA.
UNIVERSIDAD MAYOR DE SAN ANDRÉS
“DISEÑO, CONSTRUCCIÓN E IMPLEMENTACIÓN DE UN EQUIPO MEDIDOR DE FUERZA DE IMPACTO, CON SISTEMA DE ELEVACIÓN, FRENADO Y HMI PARA EL LABORATORIO DE MECÁNICA.
FUNDAMENTOS DE PROGRAMACION DANIELA RODRIGUEZ L.
ERRORES E INCERTIDUMBRES
Asignatura: FÍSICA Carreras: Ingeniería Agronómica Bromatología.
CASO CLÍNICO DE LABORATORIO
BIG DATA + BI Creando Empresas Inteligentes con Valor
Dpto. de Física y Química
optaciano Vásquez UNIVERSIDAD AUTÓNOMA DEL ESTADO DE MÉXICO
Tesis de grado previa a la obtención del título de Ingeniería en Administración Turística y Hotelera PLAN PARA EL APROVECHAMIENTO DE LOS RECURSOS NATURALES.
Una Clase Inusual sobre Ciencia y Fe en una Universidad Secular
La Planeación y Control Financiero
MAT289 – Laboratorio de Modelación II
PROPIEDADES DE LOS NÚMEROS REALES
ANÁLISIS DEL DESEMPEÑO DE UN SISTEMA MIMO EN UN CANAL NO LINEAL COMPLEJO DIVIDIDO EN SUBBANDA CON SERIES DE VOLTERRA AUTOR: VALERIA IMBAQUINGO DIRECTOR:
DEPARTAMENTO DE CIENCIAS ECONÓMICAS ADMINISTRATIVAS Y DE COMERCIO
DEPARTAMENTO DE CIENCIAS ECONÓMICAS ADMINISTRATIVAS Y DE COMERCIO
ACCIONES SOBRE PUENTES DE CARRETERAS - Curso Proyecto
DESNUTRICIÓN Dr. Edgar Játiva MD. Msc..
DIMENSIÓN FRACTAL: APARICIÓN Y CÁLCULO MEDIANTE EL MÉTODO BOX COUNTING EN DISTINTOS ÁMBITOS AUTORES: CONCEPCIÓN CARMONA CHAVERO , AMINE CHAGHIR CHIKHAOUI.
AUTOR: LAURA VANESSA CEVALLOS PARRAGA
Regresión y Correlación Múltiple: El modelo de regresión múltiple.
Capitulo 6 – La historia termica del Universo
Investigación de operaciones
CARRERA DE INGENIERÍA MECÁNICA ABEDRABBO HAZBUN, ANIBAL FARUK
UNIVERSIDAD DE LAS FUERZAS ARMADAS ESPE
PROBLEMAS ARITMÉTICOS Tema 4 4º ESO Op A
Conceptos Matemáticos
Departamento de eléctrica y electrónica
Dpto. de Física y Química
6. EJEMPLOS DE REACCIONES QUÍMICAS Dpto. de Física y Química
  TRABAJO DE TITULACIÓN, PREVIO A LA OBTENCIÓN DEL TÍTULO DE INGENIERO EN FINANZAS –CONTADOR PÚBLICO-AUDITOR  TEMA: ESTUDIO ECONÓMICO FINANCIERO PARA LA.
Julio César Torres Varela
Principios mendelianos
Robótica Modular Libre
UNIVERSIDAD DE LAS FUERZAS ARMADAS “ESPE”
UNIVERSIDAD DE LAS FUERZAS ARMADAS ESPE
Subastas de Largo Plazo: Diseño y Resultados
The Future of Extractives Industries in LAC and The Role of STI
AUTOR Paredes Gordillo Marco Antonio
QUÍMICA/QUÍMICA GENERAL LEYES DE LOS GASES
“ANÁLISIS DE DESEMPEÑO DE MEZCLAS ASFÁLTICAS TIBIAS”
TEMA 8: ácidos y bases QUÍMICA IB.
Investigación de operaciones
Planificación y Optimización de Consultas
2.-DESCRIBIR FENOMENOS CONOCIDOS POR LAS FUNCIONES MATEMATICAS
DEPARTAMENTO DE CIENCIAS ECONÓMICAS ADMINISTRATIVAS Y DE COMERCIO   CARRERA DE INGENIERÍA EN MERCADOTECNIA   TRABAJO DE TITULACIÓN, PREVIO A LA OBTENCIÓN.
DEPARTAMENTO DE CIENCIAS DE LA TIERRA Y LA CONSTRUCCIÓN CARRERA DE INGENIERÍA GEOGRÁFICA Y DEL MEDIO AMBIENTE TRABAJO DE TITULACIÓN PREVIO A LA OBTENCIÓN.
Tema 8 Las fuerzas IES Padre Manjón Prof: Eduardo Eisman.
Presentado por: Juan David Chimarro
DEPARTAMENTO DE CIENCIAS ECONÓMICAS, ADMINISTRATIVAS Y DE COMERCIO CARRERA DE INGENIERÍA COMERCIAL SISTEMA DE COOPERACIÓN DE LA FUERZA AÉREA ECUATORIANA.
LXV Reunión anual de Comunicaciones Científicas- UMA-2016 Universidad Nacional del Sur – Bahía Blanca Modelización Estructural de Series de Tiempo de.
*CN.Q Analizar disoluciones de diferente concentración, mediante la elaboración de soluciones de uso común. SOLUCIONES.
TITULO DEL CASO CLÍNICO:
DESIGNADO DE LA CARRERA DESIGANDO DEL DEPARTAMENTO
Introducción a los Polímeros
Gabriela Pazmiño Vaneza Zambrano Octubre
TESIS DE GRADO MAESTRÍA DE PLANIFICACIÓN Y DIRECCIÓN DE MARKETING TEMA: SISTEMA DE GESTIÓN DE SERVICIOS DE CAPACITACIÓN PROFESIONAL Y EMPRESARIAL BAJO.
INCERTIDUMBRE LABORATORIO FUNDAMENTOS DE MECÁNICA.
Introducción Universidad Industrial de Santander
Transcripción de la presentación:

Haciendo el modelo depredador presa más realista Los depredadores se interfieren entre sí. Isoclina densoindependiente del depredador P Isoclina del depredador con interferencia intraespecífica + depredadores necesitan más presas N eco gral 2C 2014

Haciendo el modelo depredador presa más realista Los depredadores se interfieren entre sí. Los depredadores tienen un límite independiente de la presa + depredadores necesitan más presas Límite intraespecífico Isoclina densoindependiente del depredador P Isoclina del depredador con interferencia intraespecífica N eco gral 2C 2014

Teo Depred. 2. 2·C 2013 La densodependencia del depredador tiene un efecto estabilizador sobre la dinámica del sistema P N P t Isoclina depredador Isoclina presa N eco gral 2C 2014

La presa muestra crecimiento densodependiente dN/dt Individuos que se agregan a la población dN2/dt Individuos que retira el depredador: Consumo: C dN1/dt C dN3/dt N2 N N1 N3 dN/dt con depredación= dN/dt - C Para N1 dN/dt con dep es >, = o < 0? Para N2 dN/dt con dep es >, = o < 0? Para N3 dN/dt con dep es >, = o < 0? > 0 = 0 < 0 eco gral 2C 2014

La presa también puede tener densodependencia intraespecífica Punto de equilibrio estable dN/dt C4= cNP4 C3= cNP3 C2=cNP2 C1= cNP1 K N dNc/dt= rN(K-N)/K - cNP dNc/dt =0 rN(K-N)/K = cNP eco gral 2C 2014 Reclutamiento neto = consumo

Isoclina de equilibrio densodependiente para la presa con depredador Isoclina di r/c Puntos de equilibrio cada vez menores de la presa cuando aumenta el depredador K N rN(1-N/K)K = cNP r(1-N/K) = cP Si P = 0, N = K Si N = 0, P= r/c r(1-N/K)/c = P eco gral 2C 2014

Depredadores y presas densodependientes Isoclina del depredador con interferencia y autolimitación K N P Isoclina de la presa cuando hay densodependencia intraespecífica eco gral 2C 2014

Depredadores y presas densodependientes K N eco gral 2C 2014

Interacción depredador- presa Densoindependencia intraespecífica Modelo LV Ciclos neutralmente estables Densodependencia en depredador y/o presa Modificaciones al modelo Mayor estabilidad eco gral 2C 2014

Efectos de refugio de la presa o respuesta funcional de tipo 3 dN/dt C Consumo disminuye a bajas densidades: Respuesta funcional tipo III o refugios C C N C dN/dt Consumo se hace nulo a bajas densidades C C eco gral 2C 2014 N

Isoclina de la presa con refugio o Respuesta funcional tipo 3 eco gral 2C 2014

Isoclina de la presa con refugio o Respuesta funcional tipo 3 Isoclina del depredador N eco gral 2C 2014

Favorecidos por heterogeneidad ambiental Refugios Virtuales Reales Depredador agregado Agregación del depredador Presa eco gral 2C 2014

Agregación de presas- El depredador se agrega donde hay alta densidad de presas Refugios temporales: la presa se dispersa más rápidamente que el depredador eco gral 2C 2014

Experimento de Huffaker 2 insectos: Herbívoro: alimentado con naranjas Depredador Herbívoro solo: fluctuaba Herbívoro + depredador en sistema simple= se extinguían Herbívoro + depredador en sistema que impedia movimiento del depredador= se mantenían con fluctuaciones eco gral 2C 2014

Efectos desestabilizadores dn/dt Efecto Allee La presa no crece a bajas densidades N P C Isoclina presa N eco gral 2C 2014

Efectos desestabilizadores: la presa no crece a bajas densidades: Efecto Allee dN/dt C C C N P dN/dt-C=0 eco gral 2C 2014 N

Efecto de una respuesta funcional del depredador de tipo II dN/dt C3 C2 C1 N eco gral 2C 2014

Efecto de una respuesta funcional del depredador de tipo II Isoclina de la presa N A bajas densidades de presa, la proporción de presas consumidas es mayor eco gral 2C 2014

Efecto de una respuesta funcional de tipo 2 Isoclina presa P Isoclina depredador Si la isoclina del depredador corta a la de la presa a bajas densidades el sistema se desestabiliza N N eco gral 2C 2014 t

Aplicaciones de la ecología de poblaciones Explotación de especies Modelo de cuota fija dN/dt Consumo K/2 N eco gral 2C 2014

Reclutamiento neto incluyendo cosecha q= constante X= esfuerzo de cosecha dNC/dt= rN(K-N)/K - qXN dNC/dt= dN/dt - qXN Reclutamiento con cosecha dN/dt qXN N o kg Datos necesarios: Tamaño del stock Crecimiento y reclutamiento Mortalidad natural y por cosecha eco gral 2C 2014

Rendimiento máximo sostenido: cuando la población está en K/2 dN/dt Punto de equilibrio N Rendimiento máximo sostenido: cuando la población está en K/2 eco gral 2C 2014

Punto de equilibrio inestable Punto de equilibrio estable dN/dt N eco gral 2C 2014

Cuota fija máxima= máximo valor de dN/dt cuando N=K/2 Modelo de cuota fija= se extrae una cantidad (N o biomasa) fija, no depende del tamaño del stock. Cuota fija máxima= máximo valor de dN/dt cuando N=K/2 dN/dt 1- dN/dt < cosecha, la población disminuye cosecha 2- dN/dt = cosecha, la población se mantiene 1 2 3 3- dN/dt< cosecha, la población disminuye N o biomasa (stock) En el punto 2, N (o biomasa) = K/2 Problema: estimación de N o biomasa eco gral 2C 2014

Elección de cuota fija mayor que el máximo sostenible 1- dN/dt < cosecha, la población disminuye cosecha dN/dt 2- dN/dt < cosecha, la población disminuye 1 2 3 3- dN/dt< cosecha, la población disminuye N o biomasa (stock) Hay sobre explotación, no hay equilibrio eco gral 2C 2014

Problemas del modelo de cuota fija: Se debe estimar K para fijar la cuota K a veces fluctúa EJ: Años Niño y Niña Causa de extinción de pesquerías K eco gral 2C 2014 t

Esfuerzo de captura total por año Pesquería de anchoita en Perú Captura anual Se desarrolló en una zona de afloramiento de nutrientes Entre 1950 y 1970 la pesquería se expandió en un 174% por año Se aplicó el modelo de cuota fija: 107 toneladas. 1971/72 En 1971/72 hubo sobrepesca: afectó adultos Esfuerzo de captura total por año El fenómeno del Niño causó una disminución del reclutamiento, concentración de adultos y el colapso de la pesquería eco gral 2C 2014

Cambios en la cadena trófica después del colapso de la pesquería de anchoita eco gral 2C 2014

Ejemplo de pesquería de sardina en costas del Pacífico de EEUU de N América eco gral 2C 2014

Modelo de esfuerzo fijo. La cosecha se realiza mediante algún mecanismo caza Tienen un rendimiento Pesca con caña, redes Captura por unidad de esfuerzo Captura por unidad de esfuerzo stock Esfuerzo de captura total A medida que disminuye el stock, hace falta un mayor esfuerzo total para una misma captura eco gral 2C 2014

Distintos niveles de esfuerzo de captura Si se fija el esfuerzo de captura, cuando hay menos, se extrae menos. Distintos niveles de esfuerzo de captura dN/dt cosecha Stock o biomasa eco gral 2C 2014

Esfuerzo de captura total/año Cuando la cosecha es muy grande, afecta el stock y por lo tanto la captura siguiente disminuye Captura total/año Esfuerzo de captura total/año eco gral 2C 2014

Modelo de esfuerzo fijo Exito de captura N dN/dt Consumo eco gral 2C 2014 N

Limitaciones de los modelos de cosecha Requieren una buena estimación de los parámetros poblacionales, y que estos se mantengan en el tiempo Asumen que el efecto de la cosecha es el mismo para todas las clases de edades eco gral 2C 2014

Especie que causa daños económicos o sanitarios ¿Qué es una plaga? Control de plagas Especie que causa daños económicos o sanitarios ¿Qué es una plaga? Es muy difícil y en general no deseable ¿El objetivo es eliminarlas? eco gral 2C 2014

Equilibrio a altas densidades N Umbral de daño N tiempo Equilibrio a altas densidades N Umbral de daño Equilibrio a bajas densidades eco gral 2C 2014 tiempo

¿Por qué una especie puede convertirse en plaga? N poblacional Aumento Disminución Recursos Depredadores, patógenos, competidores Aumento Disminución Aumento Acción del hombre eco gral 2C 2014

Control mecánico de malezas Tipos de control época de cultivo Control mecánico de malezas Alternancia de cultivos Normas de manejo Insecticidas, fungicidas, herbicidas Control químico Enemigos naturales ¿Técnicas de esterilización? Control biológico Control integrado de plagas Manejo del ambiente en forma integrada eco gral 2C 2014

Respuestas compensatorias Control químico Costo Respuestas compensatorias Contaminación del medio Resistencia Especificidad Puede acumularse y transformarse en el ambiente Puede afectar a especies no blanco Para mantener el efecto hay que aumentar las dosis Aves rapaces eco gral 2C 2014 Ejemplo: plagas del algodón

La aplicación de DDT para el control de un insecto plaga produjo el efecto contrario por un descenso de sus parásitos y depredadores eco gral 2C 2014

Uso de enemigos naturales Control biológico Uso de enemigos naturales a a a p a a p a a a a a a a a a a a a a a p p a a a a a a a a a a p Lugar donde es plaga Lugar de origen eco gral 2C 2014

Parasitoide. Control de la vinchuca Patógeno: virus Parásito Enemigo natural Parasitoide. Control de la vinchuca Depredador: control de malezas Muchos agentes para control de malezas son insectos herbívoros, pero que deben poder cumplir el ciclo completo en el sitio nuevo eco gral 2C 2014

Control del cactus en Australia por Cactoblastis cactorum Ejemplos Control del cactus en Australia por Cactoblastis cactorum El cactus, Opuntia stricta, introducido para cercos en Australia Área ocupada (acres) Año 10.000.000 1900 58.000.000 1920 60.000.000 1925 Agente de control: Cactoblastis cactorum, originario del N de Argentina. Liberado en 1926. eco gral 2C 2014

Introducida como ornamental en 1900 en EEUU Hypericum perforatum: maleza que invade pasturas y es tóxica. Originaria de Eurasia y norte de África Introducida como ornamental en 1900 en EEUU En 1944 ocupaba 2.000.000 acres Agente de control: Chrysolina quadrigemina eco gral 2C 2014

Introducido como ornamental en Africa y Australia Otro ejemplo: el camalote Introducido como ornamental en Africa y Australia Interrumpe la navegación en muchos cursos de agua en África Agente de control: Neochetina eichorniae Control mecánico: costoso e inefectivo eco gral 2C 2014