ESTADÍSTICA BIDIMENSIONAL

Slides:



Advertisements
Presentaciones similares
Estadística bidimensional
Advertisements

Matemáticas Acceso a CFGS
Diagramas de dispersión (Nube de puntos)
Variables estadísticas bidimensionales
DISTRIBUCIONES BIDIMENSIONALES
Variables estadísticas bidimensionales
@ Angel Prieto BenitoMatemáticas Aplicadas CS I1 U.D. 12 * 1º BCS ESTADÍSTICA BIDIMENSIONAL.
Tema 2: Estadística bidimensional
ESTADISTICA DESCRIPTIVA BIVARIADA MEDIDAS DE RELACIÓN ENTRE VARIABLES CUANTITATIVAS.
ESTADÍSTICA BIDIMENSIONAL
Tema 3: Distribuciones bidimensionales: Relación estre dos variables estadísticas Relación estadísca: Correlación Diagramas de dispersión.
1. Relación estadística: correlación 2. Diagramas de dispersión o nube de puntos 3. Tablas de frecuencia simples o doble entrada 4. Distribuciones marginales.
TEMA 3: ESTADÍSTICA BIDIMENSIONAL. ÍNDICE: 1.- Relación estadística: correlación. 2.- Diagramas de dispersión o nube de puntos. 3.- Tablas de frecuencia.
@ Angel Prieto BenitoApuntes Matemáticas 1º BCT1 U.D. 15 * 1º BCT ESTADÍSTICA BIDIMENSIONAL.
TEMA 3: Estadística Bidimensional. ● Álvaro Fernández Romero y Luis Carlos Fernández herrezuelo.
Funciones y gráficas Daniel Ordoñez Aguirre Licenciatura EN DERECHO
ESTADÍSTICA BIDIMENSIONAL
Matemáticas 2º Bachillerato C. T.
ESTADÍSTICA BIDIMENSIONAL
Tarea II Matemáticas Francisco Raul Gandara Villaverde
Matemáticas Aplicadas CS I
FUNCIONES ELEMENTALES
TEMA 3: Distribuciones bidimensionales: relación entre dos variables estadísticas. Cristhian Lopez.
Matemáticas 2º Bachillerato C.S.
Apuntes de Matemáticas 2º ESO
ESTADÍSTICA BIDIMENSIONAL
INFERENCIA ESTADÍSTICA
ESTADÍSTICA BIDIMENSIONAL
ESTADISTICA BIDIMENSIONAL
APLICACIONES DE LAS FUNCIONES
U.D. 13 * 3º ESO E.AP. FUNCIONES LINEALES Y CUADRÁTICAS
ESTADÍSTICA BIDIMENSIONAL
ESTADÍSTICA BIDIMENSIONAL
DISTRIBUCIONES BIDIMENSIONALES
Relaciones dadas por tablas
U.D. 13 * 3º ESO E.AP. FUNCIONES LINEALES Y CUADRÁTICAS
Matemáticas 2º Bachillerato C.T.
ESTADÍSTICA BIDIMENSIONAL
Apuntes Matemáticas 2º ESO
Funciones.
ESTADÍSTICA BIDIMENSIONAL
GEOMETRÍA ANALÍTICA U. D. 9 * 4º ESO E. Angel Prieto Benito
Apuntes de Matemáticas 3º ESO
FUNCIONES ELEMENTALES
Matemáticas Aplicadas CS I
ESTADÍSTICA BIDIMENSIONAL
Análisis descriptivo y presentación de datos bivariables
PREDICCIÓN Y ESTIMACIÓN
COMPOSICIÓN Y TRANSFORMACIÓN DE FUNCIONES
1. DISTRIBUCIONES BIDIMENSIONALES En las distribuciones bidimensionales a cada individuo le corresponden los valores de dos variables que se representan.
Apuntes Matemáticas 2º ESO
Apuntes de Matemáticas 3º ESO
ESTADÍSTICA BIDIMENSIONAL
Correlación Relación no lineal Relación lineal positiva Relación
Dr. Pelayo Delgado Tello
U.D. 12 * 3º ESO E.AC. FUNCIONES LINEALES Y CUADRÁTICAS
U.D. 12 * 3º ESO E.AC. FUNCIONES LINEALES Y CUADRÁTICAS
ESTADÍSTICA BIDIMENSIONAL
U.D. 12 * 3º ESO E.AC. FUNCIONES LINEALES Y CUADRÁTICAS
ESTADÍSTICA BIDIMENSIONAL
Correlación Relación no lineal Relación lineal positiva Relación
APLICACIONES DE LAS FUNCIONES
Apuntes Matemáticas 2º ESO
FUNCIONES ELEMENTALES
Euler - Matemáticas I Tema: 14 1 Funciones elementales Final Funciones lineales Las funciones de la forma y = ax + b, donde a, b  R se llaman funciones.
DETERMINACIÓN DE LA RECTA DE REGRESIÓN
MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES I 1º BTO A
ESTADÍSTICA BIDIMENSIONAL
ESTADÍSTICA DESCRIPTIVA Mg. JHON FREDY SABI ROJAS.
ESTADÍSTICA APLICADA  ZEUS DE JESÚS RODRÍGUEZ BUDA  GABRIELA MÁRQUEZ TORRES  MARÍA ENRIQUETA GIL CÓRDOVA  ELIÁN ANTONIO GONZALEZ GARCÍA  CRISTELL.
Transcripción de la presentación:

ESTADÍSTICA BIDIMENSIONAL U. D. 14 * 4º ESO E. AP. @ Angel Prieto Benito Matemáticas 4º ESO E. AP.

DIAGRAMA DE DISPERSIÓN U. D. 14.1 * 4º ESO E. AP. @ Angel Prieto Benito Matemáticas 4º ESO E. AP.

Diagrama de dispersión Dada una variable estadística bidimensional (X, Y) lo primero que debemos hacer es representar gráficamente los puntos ( pares de valores x,y ) en unos ejes cartesianos para determinar las regularidades existentes o, vista la nube de puntos formada, descartar los cálculos posteriores. Si vista la nube de puntos se observa una relación funcional entre las magnitudes, estaremos en el ámbito de las Funciones, y lo suyo sería deducir la fórmula o ecuación que la defina, sea ésta lineal, cuadrática, cúbica, polinómica , de proporcionalidad inversa, radical, exponencial o logarítmica. Si la nube de puntos indica una relación no funcional, lo procedente en encontrar una función estadística que relacione lo mejor posible las magnitudes; es decir una recta o curva que pase por todos y cada uno de los puntos o lo más próximo a los mismos. Esa recta encontrada se llamará RECTA DE REGRESIÓN o también RECTA DE AJUSTE. En lugar de una recta podría ser una parábola, una hipérbola, una exponencial, etc. Sería la curva de ajuste. @ Angel Prieto Benito Matemáticas 4º ESO E. AP.

Correlación El Diagrama de dispersión o nube de puntos, nos indicará, entre otras cosas: Si la correlación, la relación entre ambas variables, es fuerte o débil. Será fuerte si los puntos están muy juntos, poco dispersos. Será débil si los puntos están muy separados entre sí, muy dispersos. Si la correlación, la relación entre ambas variables, es directa o inversa. Será directa si al aumentar el valor de xi aumenta también el de yi. Será inversa si al aumentar el valor de xi disminuye el valor de yi. Si la correlación, la relación entre ambas variables, es lineal, polinómica o exponencial (también logarítmica), dependiendo de la forma de la nube de puntos. @ Angel Prieto Benito Matemáticas 4º ESO E. AP.

Formas de la nube de puntos Observar la nube de puntos formada en el ejemplo de Horas de Estudio y Calificaciones. Se agrupan de forma lineal. Hay una recta que pasa lo más próxima posible por todos y cada uno de los puntos de la nube. La correlación, relación entre las dos magnitudes, es lineal. Podemos hallar la ecuación de dicha recta para estimar valores. 9 8 7 6 5 4 3 a) Correlación LINEAL @ Angel Prieto Benito Matemáticas 4º ESO E. AP.

Formas de la nube de puntos Observar la nube de puntos formada ahora en otro supuesto en el ejemplo de Horas de Estudio y Calificaciones. Se agrupan de forma exponencial. Hay una curva que pasa lo más próxima posible por todos y cada uno de los puntos de la nube. La correlación, relación entre las dos magnitudes, es exponencial. Podemos hallar la ecuación de dicha curva para estimar valores. 9 8 7 6 5 4 3 b) Correlación exponencial @ Angel Prieto Benito Matemáticas 4º ESO E. AP.

Formas de la nube de puntos Observar la nube de puntos formada en este ejemplo de Horas de ocio diario y Calificación en los estudios. Se agrupan de forma de rama de una hipérbola. Hay una curva de proporcionalidad inversa que pasa lo más próxima posible por todos y cada uno de los puntos de la nube. La correlación, relación entre las dos magnitudes, es de proporcionalidad inversa. Podemos hallar la ecuación de dicha curva para estimar valores que no sean los puntos dados. 9 8 7 6 5 4 3 c) Correlación de proporcionalidad inversa @ Angel Prieto Benito Matemáticas 4º ESO E. AP.

Formas de la nube de puntos Observar la nube de puntos formada ahora en otro supuesto en el ejemplo de Horas de Estudio y Calificaciones. Se agrupan de forma cuadrática. Hay una rama parabólica que pasa lo más próxima posible por todos y cada uno de los puntos. La correlación, relación entre las dos magnitudes, es cuadrática (los valores de yi no son tan grandes para ser una correlación exponencial). Podemos hallar la ecuación de dicha curva para estimar valores. 9 8 7 6 5 4 3 d) Correlación cuadrática o parabólica. @ Angel Prieto Benito Matemáticas 4º ESO E. AP.

CORRELACIÓN DÉBIL yi xi Nota 9 8 7 6 5 4 3 2 1 Observar la nube de puntos formada ahora en otro supuesto en el ejemplo de Horas de Estudio y Calificaciones. Los puntos, en lugar de agruparse marcando una tendencia lineal, polinómica o exponencial, se dispersan. La correlación, relación entre las dos magnitudes, es débil o muy débil al haber tal dispersión. Podemos hallar la ecuación de una recta o curva que mejor se ajuste para estimar valores, pero sería poco fiable y efectiva. yi xi 0 1 2 3 4 5 6 7 Horas Correlación débil: Los puntos de la nube están muy dispersos. @ Angel Prieto Benito Matemáticas 4º ESO E. AP.

CORRELACIÓN FUERTE yi xi Observar la nube de puntos formada ahora en otro supuesto en el ejemplo de Horas de Estudio y Calificaciones. Los puntos marcan de forma clara una tendencia lineal, y además están muy próximos a la supuesta recta de ajuste. La correlación, relación entre las dos magnitudes, es fuerte, tanto más como más se aproximen los puntos a la recta. Podemos hallar la ecuación de una recta de ajuste para estimar valores, siendo ahora fiable y bastante efectiva. Nota 9 8 7 6 5 4 3 2 1 yi xi 0 1 2 3 4 5 6 7 Horas Correlación fuerte: Los puntos de la nube están muy juntos. @ Angel Prieto Benito Matemáticas 4º ESO E. AP.

CORRELACIÓN DIRECTA yi xi Una importante característica que debemos extraer de la nube de puntos es si la correlación es directa o inversa. Habrá correlación DIRECTA si a aumentar los valores de xi aumentan también los de yi. Pero al ser una correlación estadística, no funcional, es muy normal que en uno o varios intervalos de xi el valor de yi en lugar de aumentar disminuya. El cálculo de parámetros nos determinará, en casos visualmente poco claros, si es directa o inversa. Nota 9 8 7 6 5 4 3 2 1 yi xi 0 1 2 3 4 5 6 7 Horas Correlación DIRECTA: Al aumentar xi aumenta yi. @ Angel Prieto Benito Matemáticas 4º ESO E. AP.

CORRELACIÓN INVERSA yi xi Habrá correlación INVERSA en una relación estadística entre dos magnitudes si al aumentar los valores de xi aumentan también los de yi. Pero al ser una correlación estadística, no funcional, es muy normal que en uno o varios intervalos de xi el valor de yi en lugar de aumentar disminuya. El cálculo de parámetros nos determinará, en casos visualmente poco claros, si es directa o inversa. El que sea directa o inversa es una característica independiente a la forma y fortaleza de la correlación. Nota 9 8 7 6 5 4 3 2 1 yi xi 0 1 2 3 4 5 6 7 Horas Correlación INVERSA: Al aumentar xi disminuye yi. @ Angel Prieto Benito Matemáticas 4º ESO E. AP.