VENTILACIÓN PULMONAR El arte de medicina consiste en entretener al paciente mientras la naturaleza cura la enfermedad. Voltaire (1694-1778)

Slides:



Advertisements
Presentaciones similares
In it to win it. Soy Dale … Responde a las preguntas : Tenéis solo 10 minutos. Cuando la alarma suena, los que están en las sillas ganan.
Advertisements

Los reflexivos, parte II. Where we left off… By now, you should be comfortable conjugating both regular verbs and reflexive verbs. By now, you should.
Ser vs Estar.
Spanish IV. Escribiendo/Pecados Acuerdo del género Acuerdo de la pluralidad Acuerdo del tenso.
Las Palabras Interrogativas
El pretérito The Preterite
Goal: Factor trinomials of the form ax2 + bx + c
3.5. Price competition and capacity constraints- Edgeworth Solution
Types of questions Generally speaking, there are three types of questions Tag Sí/no Information seeking.
-AR Verbs In Spanish, there are three classes (or conjugations) of verbs: those that end in –AR, those that end in –ER, and those that end in –IR. This.
Tener Lets look at the verb tener (to have). It features two verb changes that we will see very soon.
Panorama social de América Latina MDG s and Gender Sonia Montaño ECLAC Washington November 2003 IANWGE Task Force.
¿Puede existir vida en este arroyó? ¿Cómo sabe si este arroyó es salubable? Puede tomar pruebas para saber. Tres cosas que puede examinar son la temperatura,
The Subjunctive In this slide show, we are going to look at a verb form that has all but disappeared from English – the subjunctive!
Capítulo 2B Los verbos después de las preposiciones
Types of questions Generally speaking, there are three types of questions Tag Sí/no Information seeking.
Lunes el diecinueve de marzo. The future tense is used in Spanish to talk about future events. It is used when ever we would use the phrase I will… in.
The Subjunctive In this slide show, we are going to look at a verb form that has all but disappeared from English – the subjunctive!
2003 HYPACK MAX Training Seminar1 Sample Monepts – Flying Along a Planned Line in 3D Terrain Viewer (3DTV) One of the flight modes in 3D TV is LNW.
Game Cluedo: How to Play 1.Your group should have the 21 cards containing 6 cards of suspects, 9 rooms and 6 weapons, a tally card for each member and.
In Lecciones 6–9, you learned the preterite tense
The Imperfect Tense: -Ar Regular Verbs
Prepositions, p. 151 delante de detrás de al lado de entre cerca de
Arquitectura de Computadores I
You will now learn how to form and use the past subjunctive (el pretérito imperfecto de subjuntivo), also called the imperfect subjunctive. Like the present.
Making comparisons In this slide show, well look at ways of expressing differences and similarities.
Modelo (100 palabras) Ayer hubo un terremoto muy fuerte cerca de la ciudad. Creemos que muchas personas murieron y el terremoto también destruyó muchos.
Apuntes preparados por Jesus Carrera con material de Meier y Poetter
Ondas sísmicas. Seismic waves The energy travels as seismic waves which are vibrations caused by earthquakes. La energía viaja como ondas sísmicas que.
Direct object pronouns (DOPs)
Stockholms Underground Subway El metro de Estocolmo está considerado como "la galería de arte más larga del mundo". Cuenta con 3 líneas principales.
Spatial Vibrations I The following pastels are visual representations of the initial contact with extraterrestrials through energetic frequencies and signals.
© 2007 CLAUSS (separación de sílaba) Syllable separation in English and Spanish does not work in the same way. Even though it is different, it is absolutely.
Subject Pronouns and AR verb conjugations As you click through this powerpoint, you will need to answer the questions on your worksheet. At the end, you.
(por favor) By emory gibson Para describir how long ago en español, presta attencion.
Español II Srta. Forgue El 11 de abril de La clase de hoy El 11 de abril Ahora mismo: Mirar el tutorial de 7.1 Repaso: Corregir INTÉNTALO en la.
TEMA 2.- INTRODUCCIÓN A LOS MÉTODOS ÓPTICOS PROPIEDADES DE LA RADIACION ELECTROMAGNETICA Muchas de las propiedades de la radiación electromagnética.
Fecha: martes 26 de febrero de 2013
Transformaciones que conservan ángulos
GRAMÁTICAS: 5.2 Negation with nunca, tampoco, nadie, and nada.
La Lección del Repaso Antes de entrar en la clase de Español IV, necesita saber esta información.
Articles, nouns and contractions oh my!. The POWER of the article THE 1. There are four ways to express THE in Spanish 2. The four ways are: El La Los.
The Incredible Journey Where will the water you drink this morning be tomorrow? Donde el agua que bebe de esta mañana será mañana?
P In this slide show, we are going to look at a verb form that has all but disappeared from English – the subjunctive! In this slide show, we.
 Making complete sentences How to make complete sentences in Spanish. The following presentation is designed to help you learn how to do the following:
TIENEN 5 MINUTOS Objective: I can use prepositions to help describe where I am located. Vocab/Ideas: Delante de Encima de Cerca de A la izquierda Al lado.
1 DEFINITION OF A CIRCLE and example CIRCLES PROBLEM 1a PROBLEM 2a Standard 4, 9, 17 PROBLEM 1b PROBLEM 2b PROBLEM 3 END SHOW PRESENTATION CREATED BY SIMON.
The Subjunctive In this slide show, we are going to look at a verb form that has all but disappeared from English – the subjunctive!
 1. Why should a person learn Spanish? Give at least 3 reasons in your explanation.  2. What Spanish experiences have you had? (None is not an option.
Our first project: The iron. Name of the student: Miranda de la Torre Rivero. AVATAR.
Negatives and Questions. Negatives Consider the following sentences: Juan estudia mucho. Marta y Antonio viven en Georgia. Rita y el chico necesitan.
Español la memoria (1): cómo trabajarla bien. Hoy vamos a… mirar escucharpensar hablar memorizar.
Derechos de Autor©2008.SUAGM.Derechos Reservados Sistema Universitario Ana G. Méndez División de Capacitación Basic Quality Tools CQIA Primer Section VII.
Stem-changing Verbs (u-ue), (e-ie) Stem-changing verbs are verbs where there is the a spelling change in some of the forms of the verb. There is only.
Transitional Expressions
Un juego de adivinanzas: ¿Dónde está el tesoro? A1B1C1D1E1F1 A4B4C4D4E4F4 A2B2C2D2E2F2 A5B5C5D5E5F5 A3B3C3D3E3F3 A6B6C6D6E6F6 Inténtalo de nuevo Inténtalo.
VENTILACIÓN PULMONAR Flujo de entrada y salida de aire entre la atmosfera y los alvéolos pulmonares. Ventilación pulmonar total (VT): Es la cantidad.
Who was Isaac Newton? Sir Isaac Newton ( ), an English scientist and mathematician famous for his discovery of the law of gravity, also discovered.
Climate changes Climate is the usual weather of a place. Climate can be different for different seasons. A place might be mostly warm and dry in the summer.
EQUILIBRIUM OF A PARTICLE IN 2-D Today’s Objectives: Students will be able to : a) Draw a free body diagram (FBD), and, b) Apply equations of equilibrium.
Hoy es miércoles el dieciocho de marzo.
SER and SUBJECT PRONOUNS
First Grade Dual High Frequency Words
THE ATMOSPHERE.
GRAPHIC MATERIALS 1. GRAPHIC MATERIALS. GRAPHIC MATERIALS 1. GRAPHIC MATERIALS.
P HASE DIAGRAMS OF PURE SUBSTANCE Roberto Carlos García Zúñiga.
LEY DE CHARLES V - T.
LOS VERBOS TENER Y VENIR
Matter and Thermal Energy
Changes of State Unit 1: Matter.
Transcripción de la presentación:

VENTILACIÓN PULMONAR El arte de medicina consiste en entretener al paciente mientras la naturaleza cura la enfermedad. Voltaire (1694-1778)

Los doctores son hombres que prescriben medicinas que conocen poco, curan enfermedades que conocen menos, en seres humanos de los que no saben nada. Voltaire (1694-1778)

La función primordial de los pulmones consiste en garantizar un intercambio de gases adecuado para las necesidades del organismo, de forma que el aporte de O2 necesario para las demandas metabólicas de los tejidos y la eliminación de CO2 de los mismos se lleven a cabo correctamente de forma simultánea. Estos dos gases son, junto con el nitrógeno (N2), los tres elementos esenciales con los que el pulmón trabaja constantemente. La presión parcial (P) que ejerce cualquiera de estos tres gases fisiológicos en los 300 millones de unidades alveolares funcionales que constituyen el parénquima pulmonar viene regulada por tres factores principales:

1.- La composición del gas inspirado, dependiente de la fracción inspiratoria de O2 (FIO2) y de la ventilación alveolar (VA); 2.- Los cocientes o relaciones ventilación perfusión (VA/Q) pulmonares; y 3.- La composición de la sangre venosa mixta (mezclada) (v), dependiente a su vez del flujo sanguíneo o gasto cardiaco (QT) del organismo y del consumo de O2 (VO2) tisular.

ELEMENTOS DE LA RESPIRACIÓN Inspiración : Espiración: - Activa - Pasiva - Presión Negativa - Retracción - Expansión de elástica cavidad torácica y diafragma RESPIRACIÓN Anatomía: - Pared torácica Ley de Boyle: - Mús. Resp. -  presión - Diafragma -  volumen - Cav. Torácica (P1 x V1 = P2 x V2)

Aumenta la presión transpul-monar El flujo de aire se debe a cambios en la presión alveolar Aumenta la presión transpul-monar Los músculos respiratorios se contraen Disminuye la presión intrapleural La cavidad torácica se expande El pulmón se expande La presión alveolar cae por debajo de la Pa Entra aire en el pulmón

Presiones Pulmonares PL = Presión Transpulmonar = P. Alveo. - P. Intrap. PT = Presión Transtorácica = P. Intrap. - P. Atm. PR = Presión Respiratoria = P. Alveo. - P. Atm. Presión Atmosférica PL Presión Intrapleural PT Presión Alveolar PR

La presión intrapleural siempre es negativa

Transpulmonary pressure is the difference between the alveolar pressure (760mmHg) and the interpleural pressure (756mmHg). At rest the forces tending to collapse the lung, surface tension and tissue elastic recoil, are pulling the lungs away from the chest wall. Since the interplural space is filled with fluid, it only slightly expands. This small increase in size reduces the interplural pressure below atmospheric. Thus at rest the lungs are being held against the chest wall by a small vacuum.

Presión alveolar Presión intrapleural

Pequeñas Presiones!! 1cmH20 = 0.735mmHg 1mmHg = 1.35 cmH2O

Este módulo explica lo que sucede durante la respiración en reposo Este módulo explica lo que sucede durante la respiración en reposo. Examinaremos el ciclo de la respiración en 5 períodos: 1.- Reposo, 2.- Durante la inspiración, 3.- Final de la inspiración (equilibrio), 4.- Durante la espiración, y 5.- Final de la espiración. Mecánica se refiere al estudio de los aspectos mecánicos de la respiración (en oposición a los químicos o biológicos), en cuanto a la interacción de presión, volumen, y flujo aéreo dentro del sistema respiratorio. El siguiente gráfico mostrará en que parte del ciclo estamos. Observe como se mueve la bola roja a través del ciclo inspiratorio y espiratorio. La escala de abajo a la derecha correlaciona los cambios de presión con los colores utilizados en la ilustración. Observe como se mueven las flechas que representan las presiones alveolar y pleural.

En este modelo, el color púrpura indica presiones subatmosféricas (negativa), y el verde presiones mayores que la atmosférica (positivas); a color más intenso más lejos se estará de la presión atmosférica, a más pálido, más cercano a la presión atmosférica.

I- En Reposo: (Después que finaliza la espiración y antes de comenzar la inspiración.) 1. Con los músculos respiratorios en reposo, la retracción elástica del pulmón (Palv>Ppl=+5) y de la pared torácica (Ppl>Pbs=-5) son iguales pero opuestas. 2. La presión pleural es subatmosférica (fíjese en el color púrpura del espacio pleural). 3. La presión a lo largo del árbol traqueo- bronquial y en el alveolo es igual a la presión atmosférica. No existe flujo de aire. 4. El aire solo se moverá de una zona de alta presión a una de baja presión. Dado que la presión alveolar iguala la presión atmosférica no existe flujo aéreo.

II- Durante la Inspiración: 1. Se contraen el diafragma y otros músculos respiratorios. 2. Dado que el diafragma es curvo, su contracción comprime el contenido abdominal y descomprime el contenido torácico, produciendo una caída de la presión pleural. 3. Dado que el volumen inicial del pulmón no cambia, su presión de retracción (Palv - Ppl), tampoco se modifica ya que es volumen depen- diente. De esta manera, la presión pleural disminuye, y la presión alveolar disminuye de igual manera, volviéndose subatmosférica. 4. El flujo aéreo hacia los pulmones sigue el gradiente de presión desde la boca hacia los alveolos. 5. Los pulmones y pared torácica se expanden en volumen, produciendo un aumento de la presión de retracción de los pulmones hasta que se alcanza el equilibrio nuevamente.

III- Fin Inspiración: 1. Existe un equilibrio después de finalizar la inspiración y antes de que comience la espiración. 2. El flujo aéreo desciende según el gradiente de presión hasta que el pulmón alcanza un nuevo volumen de equilibrio al cual la presión alveolar se iguala a cero y el gradiente de flujo deja de existir. 3. Pulmones y tórax están totalmente expandidos.

IV- Durante Espiración: 1. La relajación de los músculos respiratorios, producen un aumento abrupto de la presión pleural a un valor menos negativo. 2. Dado que el volumen pulmonar aún no ha cambiado, la presión de retracción del pulmón sigue siendo la misma, de esta manera el aumento de la presión pleural produce el mismo aumento de la presión alveolar. 3. Esto establece un gradiente de presión desde el alveolo hacia la boca, a través del cual el aire fluye. 4. Los volúmenes pulmonar y torácico disminuyen a medida que el aire fluye hacia afuera, de tal manera que la presión de retracción pulmonar caiga también, hasta que se alcanza un nuevo equilibrio a la CRF, el volumen de equilibrio.

V- Al Final de la Espiración: 1. La cavidad pleural y el alveolo vuelven a tener la relación de presión que tenían al comienzo de la inspiración: 2. La presión pleural es -5 y la presión alveolar es 0.

*Summary The graph shows temporal changes in each index within one respiratory cycle. The inflow during inspiration is shown in negative value, and the outflow during expiration is shown in positive value.

*Summary

*When inspiratory muscles, such as the diaphragm, contract, the thoracic cavity and the lungs increase in volume. The red line shows the lungs and the outer grey line shows the chest wall. The cavity inside the chest wall is the thoracic cavity. The diaphragm is at the bottom of the thoracic cavity. Red indicates that the diaphragm is contracting. When the diaphragm contracts, the thoracic cavity increases in volume and inflates the lungs. This process is the inspiration. The volume of gas inside the lungs is called 'lung volume'. With diaphragm contraction, the lung volume increases.

*When inspiratory muscles, such as the diaphragm relax, the thoracic cavity and lungs decrease in volume. Blue indicates that the diaphragm is relaxed. With diaphragm relaxation, the lung volume decreases. This process is the expiration. The decrease in volume is due to the elasticity of the lungs, which will be discussed later.

* When the lungs are increasing in volume, the pressure inside the lungs (alveolar pressure) becomes negative compared to the atmospheric pressure. Due to the negative pressure, gas (airs) flows into the lungs. When the lungs remain increased at a constant volume, the negative pressure disappears and the flow ceases. The yellow pressure gauge indicates the pressure inside the lungs. The pressure inside the lungs are also called alveolar pressure, to specify anatomic location. When the lungs are increasing in volume, the pressure inside the lungs (alveolar pressure) are negative compared to the atmospheric pressure. Note that the yellow pressure gauge is elevated on the lung side, compared to the outer-side, which is open and thus indicates the atmospheric pressure.

* When the lungs are decreasing in volume, the pressure inside the lungs (alveolar pressure) becomes positive compared to the atmospheric pressure. Due to the positive pressure, the gas inside the lungs flows out. When the lungs remain decreased at a constant volume, the positive pressure disappears and the flow ceases. When the lungs are decreasing in volume, the pressure inside the lungs (alveolar pressure) are positive compared to the atmospheric pressure. Note that the yellow pressure gauge is lowered on the lung side, compared to the outer-side, which is open and thus indicates the atmospheric pressure.

The lungs have inward elasticity * The lungs have inward elasticity. This works towards decreasing the lung volume. The larger the lung volume, the larger the elastic force. Let's suppose that there are 'rubber bands' inside the lungs, and that they are lightly stretched. When the lung volume is increased, the 'rubber bands' are strongly stretched.

* The water between the chest wall and lungs, keep the lungs from being pulled away from the chest wall. Because of inward elastic force of the lungs and the outward elastic forces of the chest wall, the pressure between the lungs and the chest wall is negative. The chest wall has outward elasticity, which (when the respiratory muscles are relaxed and there is no respiratory movement) balances with the inward elasticity of the lungs. The pleural pressure, which is the pressure between the lungs and the chest wall, is negative (note that the blue pressure gauge on the lung side is elevated). There is water between the chest wall and lungs. The water keep the two from being apart.

*When the thoracic cavity increases in volume with inspiration, the negative pleural pressure becomes larger. With inspiration, the lung volume increases and the inward elastic force of the lungs increases. To counteract this force and increase the lung volume, the chest wall exerts a larger outward force. This makes the negative pleural pressure larger.

*When the respiratory muscles are relaxed and there are no respiratory movement... the inspiratory muscles such as the diaphragm are relaxed and the lung volume (within a quiet breath) is at its minimum. The inward elasticity of the lungs and the outward elasticity of the chest wall are balanced. The pleural pressure is negative. The pressure inside the lungs (alveolar pressure) is equal to the atmospheric pressure and there is no gas (air) flow. Since the lung volume (within a quiet breath) is at its minimum, the lung elastic force and the pleural pressure are also at their minimum.

*At the beginning of inspiration... the diaphragm begins to contract (note that it turned red!). There still are no changes in pressure, lung volume, etc.

*During inspiration... inspiratory muscles, such as the diaphragm, contract, expanding the chest wall and thoracic cavity. Because of the water, the lung volume is also increased. Since this is in the opposite direction of the lung elasticity (note that the 'rubber bands' are further stretched), the negative pleural pressure becomes larger (note the blue pressure gauge). With lung volume increasing, the pressure inside the lungs (alveolar pressure) become negative, compared to the atmospheric pressure, causing gas (air) inflow into the lungs.

At the end of inspiration... the lung volume its reaches maximum (within a quiet breath). The lung elasticity reaches its maximum (note that the 'rubber bands' are strongly stretched), thus, the negative pleural pressure reaches its maximum (within a quiet breath). The lung volume cease increasing. Without lung movement, pressure inside the lungs (alveolar pressure) is equal to the atmospheric pressure and the air inflow (inspiration) ceases.

*At the beginning of expiration... the diaphragm relaxes (note that it has turned blue). There still are no changes in pressure, lung volume, etc.

*During expiration... the inspiratory muscles are relaxed and thus, there are no force expanding the chest wall nor thoracic cavity. Thus, due to the elasticity of the lungs, the lungs and thoracic cavity decrease in volume. Naturally, the negative pleural pressure is smaller than at the end of inspiration (beginning of expiration). Because the lungs decrease in volume, the pressure inside the lungs (alveolar pressure) become positive compared to the atmospheric pressure. The positive pressure pushes out the gas inside the lungs (because of O2 and CO2 exchange with the blood, it is no longer 'air') outward through the trachea (expiration).

At the end of expiration. the chest wall has outward elasticity *At the end of expiration... the chest wall has outward elasticity. When the inward elasticity of the lungs balances with the outward elasticity of the chest wall, expiration ends. Naturally, the negative pleural pressure and lung volume is at their minimum (within a quiet breath). When the lung volume cease to decrease, pressure inside the lungs (alveolar pressure) become equal to the atmospheric pressure and the gas outflow (expiration) ceases. This is the same illustration as in "quiet breath: When the respiratory muscles are relaxed and there are no respiratory movement". Repeatedly, the diaphragm contracts and the cycle is repeated.

Changes in lung volume, air flow, intrapleural pressure, and alveolar pressure during normal (tidal) breathing. The dashed intrapleural pressure line would be followed if there were no airway resistance). The diagram at the left shows the lung and a spirometer measuring the changes. This figure depicts changes in the main parameters of interest during a normal ventilatory cycle in which a Tidal Volume of 400 - 500 ml is being inspired and expired with each breath (quiet breathing). Inspiration is indicated by a downward deflection in the first panel. Note that during the entire ventilatory cycle, the intrapleural pressure (Ppl) remains negative (2nd panel). The plot normally follows the solid blue line; alternatively it follows the dashed line when where there is no resistance to air flow (imaginary situation). Note that alveolar pressure (bottom panel) has a non-zero value only when there is air flowing.

Effect on distribution of ventilation due to inspiration from FRC (panel A) vs. starting from RV (panel B). Because of the way in which the lungs are suspended in the chest cavity and are subjected to gravity, a gradient in pleural pressure exists from the apex (top, blue) to the base, of about 7.5 cm H2O. If a subject starts his inspiration from Functional Residual Capacity (FRC) (apex -10, base -2.5; both in cm H2O), apical alveoli will start off at a larger volume than the basal ones due to the more negative apical pressure. Thus apical alveoli will be less able to accommodate further increase in volume (i.e. they are already stretched and thus less compliant than basally). Thus, if inspiration starts from FRC, most of the incoming air goes preferentially to basally located alveoli which began less distended and thus more compliant. If inspiration starts from RV (following a very energetic expiration to get below FRC), all the incoming air goes initially to apical alveoli where pleural pressure is still negative (-4 cm H2O). Basal areas are experiencing a positive pleural pressure of +3.5 cm H2O, which causes the collapse of small airways. Thus air inflow is initially prevented in that area until basal pressures become negative again and allow airway opening.