Reacciones electroquímicas

Slides:



Advertisements
Presentaciones similares
El equilibrio en las reacciones químicas
Advertisements

CELDA GALVÁNICA Cu Ag Ag +1 2 Cu +2 Ag + - KCl Cl - K 3 3 SO - NO - e
Fernando Carrillo Área de Química Inorgánica UCLM
Facultad de Ciencias Exactas y Naturales y Agrimensura
REACCIONES DE TRANSFERENCIA DE ELECTRONES (Reacciones Redox)
QUÍMICA 2º bachillerato
ELECTROQUÍMICA Transparencias 24/03/ :0724/03/ :07.
Dr. Carlos Morales A. Cardiólogo Pediatra UPCP – Hospital Coquimbo
Electroquímica.
OXIRREDUCCIÓN Y ELECTROQUÍMICA
Electrolisis.
Oxidación-reducción Curso Modelos Geoquímicos, UPC Carlos Ayora
Celdas Electroquímicas
Elaboró: Esther Flores Cruz
Qué es la electroquímica?
Electroquímica Rama de la química que estudia la interconversión entre la energía eléctrica y la energía química. Trata del uso De las reacciones químicas.
Electroquímica Capítulo 19
UNIDAD 2. TEMA: PILAS.
2. Celdas galvánicas: las pilas 3. Células electrolíticas
ELECTROQUÍMICA.
Prentice-Hall ©2002Burns 4/e Chapter 17 Slide 1 of 36 REACCIONES REDOX Oxidacion y Reduccion.
Electroquímica.
ELECTROQUÍMICA PRÁCTICA #7.
Prof. Sergio Casas-Cordero E.
3.Métodos Electroanalíticos.
proceso en el electrodo
REACCIONES DE TRANSFERENCIA DE ELECTRONES (Reacciones Redox)
REACCIONES DE TRANSFERENCIA DE ELECTRONES (Reacciones Redox)
Electroquímica Estudia los fenómenos que se producen en la transformación de energía eléctrica en energía química mediante reacciones redox (celdas electrolíticas)
Unidad X: ELECTROQUIMICA
POTENCIOMETRIA TOPICOS: Celdas galvánicas
CELDAS ELECTROQUÍMICAS
CLASE 13 ÓXIDO-R EDUCCIÓN II.
Contenidos temáticos desarrollados por:
LA ELECTROQUÍMICA Y LA BIOQUÍMICA LA ELECTROQUÍMICA Y LA BIOQUÍMICA.
La ley de Nernst y las celdas electroquímicas
(Óxido reducción) Electroquímica
QUIMICA APLICADA REDOX Y PILAS.
PILAS ELECTROQUÍMICAS
1.- Estados de oxidación Ej. H2 , Cl2, HNO3, NH4+, SO4-2
Electroquímica Capítulo 19
REACCIONES DE TRANSFERENCIA DE ELECTRONES Reacciones Redox
Bio-energética Los microorganimos requieren ENERGIA para realizar su actividades bioquímicas, desplazarse, síntesis de compuestos, multiplicarse.
La ley de Nernst y las celdas electroquímicas
Lixiviación In situ – Botaderos Pilas – Bateas Agitación
OXIRREDUCCIÓN Y ELECTROQUÍMICA Prof. Sandra González CHEM 204.
Celdas electroquímicas
Aplicaciones de la química REDOX: PILAS VOLTAICAS
 · 7. Serie electroquímica  La reacción tendrá lugar si:
Reacciones Químicas de Oxido Reducción.
ELECTROQUÍMICA. 1.Reacciones Óxido - Reducción 1.Reacciones Óxido - Reducción. Zn 2+ / Zn° Cr 2 O 7 2– / Cr 3+ MnO 4 – pH < 7,00 pH < 7,00 pH > 7,00 pH.
Métodos potenciométricos
QUIMICA APLICADA Celdas Comerciales.
Reacciones redox Electroquímica y compuestos del carbono: Reacciones redox.
Introducción a las reacciones de oxidación-reducción
Zn° + Cu2+ → Zn2+ + Cu° Zn2+ + Cu° → No reacciona.
QUÍMICA GENERAL Tema IV: Electroquímica Sumario:
CELDAS GALVÁNICAS La celda galvánica más común es la pila Daniell, en la cual se produce una transferencia de electrones desde el zinc hasta el cobre a.
Óxido reducción II. Electroquímica PPTCEL008QM11-A10V1.
Tema 4: Técnicas Electroquímicas
Reacciones redox María José París González
Electroquimica I Reacciones de óxido-reducción
Celdas electroquímicas Celdas electroquímicas Docentes: Jorge Balseca Q./ José Pinela Castro. Valor del mes: Amor. Objetivo: Reconocer y diferenciar celdas.
Tema 2. Electroquímica Resumen.
Electroquímica Los procesos electroquímicos consisten en reacciones de oxido-reducción en las cuales: - La energía liberada por.
Química (1S, Grado Biología) UAM 9. Reacciones de oxidación-reducción 9. Reacciones oxidación-reducción.
Pilas voltaicas o galvánicas Electrólisis
PILAS ELECTROQUIMICAS CELDAS GALVÁNICAS Y CELDAS ELECTROLÍTICAS
QUÍMICA GENERAL. 7. Equlibrio químico. Electroquímica 7.1 Concepto de equilibrio químico, expresión y cálculo de la constante de equilibrio 7.2 Factores.
Electroquímica I Reacciones de óxido-reducción Pilas
Transcripción de la presentación:

Reacciones electroquímicas Tema 10 Reacciones electroquímicas

Electroquímica Rama de la química que estudia la interconversión entre la energía eléctrica y la energía química. Trata del uso De las reacciones químicas para producir electricidad (pila) De la electricidad para producir reacciones químicas (electrólisis)

CONTENIDO 1.- Reacciones redox. 2.- Termodinámica de sistemas electroquímicos. Pilas galvanicas. 3.- Fuerza electromotriz de las pilas. Potenciales de electrodo. 4.- Dependencia de la fem con las concentraciones. Ecuación de Nernst. 5.- Tipos de electrodos. 6.- Aplicación: pilas y baterías. 7.- Corrosión.

1 REACCIONES REDOX. Reacción de oxidación-reducción: Aquélla en la que ocurre una transferencia de electrones. Zn + Cu2+ « Zn2+ + Cu Zn « Zn2+ + 2e- Cu2+ + 2e- « Cu Semirreacción de oxidación Zn pierde electrones: se oxida; es el agente reductor Semirreacción de reducción Cu2+ gana electrones: se reduce; es el agente oxidante Intervienen dos pares redox conjugados Zn2+/Zn Cu2+/Cu

CO + ½ O2 « CO2 ¿Cómo poner de manifiesto la transferencia electrónica? Mediante los estados de oxidación A cada elemento se le asigna un estado de oxidación: -2 +2 +4 CO + ½ O2 « CO2 Una reacción será redox si hay cambios en dichos estados. Ventajas Proporciona un mecanismo para reconocer reacciones redox Ayuda a ajustar reacciones redox [Bachiller]

2 TERMODINÁMICA DE SISTEMAS ELECTROQUÍMICOS. PILAS GALVÁNICAS. Sistemas electroquímicos: Aquéllos en los que ocurren reacciones de transferencia de electrones. Zn Cu2+ SO42- Zn + Cu2+ ® Zn2+ + Cu Cu Reacción por contacto directo. Así no es un dispositivo útil para generar corriente eléctrica. Zn2+ Pila electroquímica: Dispositivo en el que se produce una corriente eléctrica (flujo de e- a través de un circuito) gracias a una reacción espontánea (pila galvánica o voltaica) o en que se utiliza corriente eléctrica para llevar a cabo una reacción química no espontánea (célula electrolítica).

Luigi Galvani (1737-1798) Alessandro Giuseppe Antonio Anastasio Volta (1745-1827)

John Frederic Daniell (1790-1845) (-) (+) Pila Daniell John Frederic Daniell (1790-1845) Zn ® Zn2+ + 2e- Oxidación Cu2+ + 2e- ® Cu Reducción Zn (s) | Zn2+ (1 M) || Cu2+ (1 M) | Cu(s)

3 FUERZA ELECTROMOTRIZ DE LAS PILAS. POTENCIALES DE ELECTRODO. La corriente eléctrica fluye debido a una diferencia de potencial entre los dos electrodos, llamada fuerza electromotriz (fem, De). Unidades: voltios (V) (-) (+) Fuerza impulsora De DG DG = Welec = - q×De [Petrucci, p.796 y 833] q = n F ; F = 96485 C×mol-1 DG = - n F De

DG = - n F De Michael Faraday (1791-1867) Reacción espontánea: DG < 0 Þ De > 0 Reacción no espontánea: DG > 0 Þ De < 0 (la reacción espontánea será la inversa) Equilibrio: DG = 0 Þ De = 0 (no se produce energía eléctrica; la pila se ha agotado) En condiciones estándar: DGº = - n F Deº (Concentraciones de los iones = 1 M) Deº es una propiedad intensiva

En lugar de tabular valores de Deº de todas las pilas, tabulamos potenciales de electrodo Se escoge un electrodo de referencia al que por convenio se le asigna el valor de potencial cero: Electrodo estándar de hidrógeno. 2 H+ (aq) + 2 e- « H2 (g) eº = 0.00 V Se construyen pilas con un electrodo de hidrógeno y otro que cuyo potencial queramos averiguar y se mide la fem de la pila. Dicha fem será el potencial estándar del otro electrodo.

Se tabulan potenciales estándar (eº) de reducción ß Serie electroquímica A mayor eº, mayor tendencia a reducirse tiene la especie oxidada del par redox (más oxidante es). p.ej.: Zn2+ + 2e- « Zn eº = -0.76 V Cu2+ + 2e- « Cu eº = +0.34 V Más tendencia a reducirse; más oxidante La fem de una pila se calcula como: Deº = eº(cátodo) - eº(ánodo) [reducción] [oxidación] p.ej.: 0.34 – (-0.76) = 1.10 V Para que funcione la pila (reacción espontánea): Deº > 0

4 DEPENDENCIA DE LA FEM CON LAS CONCENTRACIONES. ECUACIÓN DE NERNST. Si las condiciones no son estándar ¿cuánto vale la fem? DG = DGº + RT ln Q [Tema 5] DG = - n F De DGº = - n F Deº - n F De = - n F Deº + RT ln Q Ecuación de Nernst A 25ºC :

Walther Hermann Nernst 1920 Premio Nobel de Química [http://www.nobel.se/chemistry/laureates/1920/index.html] Walther Hermann Nernst (1864-1941) “En reconocimiento a su trabajo en termoquímica”. 1920 Premio Nobel de Química

Otras aplicaciones de la ecuación de Nernst a) Obtención de constantes de equilibrio de reacciones redox En el equilibrio: De = 0 y Q = Keq b) Obtención de eº en condiciones no estándar

c) Determinación de productos de solubilidad. Se usa cuando se conocen los potenciales de dos semirreacciones que combinadas dan el equilibrio de solubilidad buscado. AgCl (s) + 1e- « Ag (s) + Cl- (aq) eº = 0.222 V Ag+ (aq) + 1e- « Ag (s) eº = 0.799 V AgCl (s) + 1e- « Ag (s) + Cl- (aq) Ag (s) « Ag+ (aq) + 1e- AgCl (s) « Ag+ (aq) + Cl- (aq) Deº = 0.222-0.799 = -0.577 V

5 TIPOS DE ELECTRODOS. 5.1. Electrodos activos. Participan en la reacción química de la pila. Se consumen o forman a medida que se produce la reacción. p.ej.: pila Daniell Þ Varillas de Zn y Cu (Zn + Cu2+ ® Zn2+ + Cu) 5.2. Electrodos inertes. No participan en la reacción química de la pila. Sólo proporcionan el soporte donde ocurre la transferencia de e- p.ej.: Varilla de Pt (Cu + 2 Fe3+ ® Cu2+ + 2 Fe2+) 5.3. Electrodos de gas. En él participa una especie gaseosa. p.ej.: electrodo de hidrógeno

6 APLICACIÓN: PILAS Y BATERÍAS. [Petrucci, tema 21, p.844-848] Baterías primarias. Baterías secundarias. Baterías de flujo y células de combustible. Baterías Pila seca Batería de plomo Pila de botón Batería de níquel-cadmio Células de combustible Ejemplos [Petrucci, tema 21, p.844-848]

7 CORROSIÓN. [Petrucci, tema 21, p.849-850] ¿En qué consiste? ¿Cuáles son las semirreacciones implicadas? ¿Qué reacciones posteriores originan la herrumbre? ¿Cómo afecta el pH? ¿Cómo se puede prevenir? - Recubrimientos - Galvanizado - Protección catódica [Petrucci, tema 21, p.849-850]