La descarga está en progreso. Por favor, espere

La descarga está en progreso. Por favor, espere

Analisis de Reconocimiento de Patrones Biometricos Reconcocimiento Facial.

Presentaciones similares


Presentación del tema: "Analisis de Reconocimiento de Patrones Biometricos Reconcocimiento Facial."— Transcripción de la presentación:

1 Analisis de Reconocimiento de Patrones Biometricos Reconcocimiento Facial

2 Identificacion del Problema autentificadores El reconocimiento biométrico responde a un sistema automático basado en la inteligencia artificial y el reconocimiento de patrones, que permite la identificación y/o verificación de la identidad de personas a partir de características morfológicas o de comportamiento, propias y únicas del individuo, conocidas como autentificadores. Como principales autentificadores podemos mencionar las huellas dactilares, la geometría de la mano, la cara, el termograma facial, el iris, la retina, la voz, el estilo de escritura...etc. Asimismo, la naturaleza del tipo de característica, morfológica o de comportamiento, se encuentra directamente relacionada con el grado de variación de las mismas con el paso del tiempo

3 Formulacion del Problema El Reconcocimiento de Patrones Biométricos se ha convertido en una herramienta habitual en las fuerzas de la policía durante los procesos de investigación criminal, posibilitando la detención de delincuentes a nivel mundial, aunque también se le reconocen otras aplicaciones específicas tales como el control de acceso a cualquier tipo de transacción o acceso a datos protegidos

4 Objetivos Objetivo Primario Estudiar y analizar las caracteristicas del modelo de reconocimiento Facial, como parte del reconocimiento de patrones Biometricos Objetivo Secundario Presentar al usuario las caracteristicas, usos, enfoques y alcances que brinda el reconocimiento de patrones biometricos para el acceso y control de información

5 Justificación He escogido este tema debido a la importancia de mantener la seguridad en el acceso de datos que son considerados no compartibles, tanto en el área tecnológica como en el área social. (Policia, Secretos de estado, Plantas de acceso limitado). A pesar que esta área no es muy extendida en el Perú, en algún momento llegara el momento que tendremos que hacer uso de estas herramientas, es por eso que vi la importancia de hacer este estudio.

6 Antecedentes de Estudio 1)Titulo: Evaluación de Sistemas de Reconocimiento Biométrico Autor: Virginia Espinoza Duro – Escuela Universitaria Politecnica de Mataro (Barcelona) Contenido: Se baso en el analisis de Reconocimiento de huellas dactilares, reconocimiento facial y reconocimiento del iris. 2) Titulo: Control de Accesos – Tecnologías Biométricas Autor: Fernando M. Oubiña Contenido: Baso su estudio en Reconocimiento Facial, huellas dactilares, geometria de la mano, iris y retina, voz, firma y dinamica de tecleo.

7 Bases Teóricas La identificación por características faciales ha sido primeramente alimentada por el cambio en la tecnología de video multimedia, de esta forma se ha incrementado la presencia de cámaras en los lugares de trabajo y el hogar. El reconocimiento por características faciales es inherente en todos nosotros. Individuos específicos pueden ser distinguidos de una multitud con solamente verles la cara. Como resultado, este tipo de identificación es considerada como la mas natural dentro de los sistemas biométricos.

8 Bases Teoricas Lo sistemas de reconocimiento facial están englobados dentro de las técnicas FRT (Face Recognition Thecniques). Estas técnicas de aproximación al reconocimiento facial, pueden clasificarse en dos categorías según el tipo de aproximación holística o analítica. La aproximación holística (método de las eigenfaces) considera las propiedades globales del patrón, mientras que la segunda (eingenfeautres) considera un conjunto de características geométricas de la cara.

9 Bases Teoricas El proceso de identificación facial posee dos métodos significantes: detección y reconocimiento. Detección comprende localizar la cara humana dentro de una imagen capturada por una video cámara y tomar esa cara y aislarla de los otros objetos en la imagen. Reconocimiento comprende en comparar la imagen facial capturada con imágenes que han sido guardadas en una base de datos. La tecnologia de reconocimiento básico involucra tanto a los 'eigenfeatures' (métrica facial, tecnica analitica) como a los 'eigenfaces(tecnica holistica).

10 Bases Teoricas Cuando una identificación facial utiliza 'eigenface (holistica), el sistema interpreta cada imagen facial como un conjunto bidimensional de patrones brillantes y oscuros. Estas áreas son las consideradas 'eigenface'. Los patrones brillantes y oscuros son luego convertidos y representados como un algoritmo el cual es temporalmente almacenado como una combinación de 'eigenfaces'. Finalmente, la combinación actual de eigenfaces es comparada contra una base de datos de eigenfaces. Por otro lado, el 'eigenfeature' (analitica) trata de determinar las distancias entre las características faciales como la nariz, ojos, estructura ósea, boca y pestañas. La diferencia en este método es que la identificación facial captura la imagen y extrae estos eigenfeatures de la cara para luego ser comparados contra otros almacenados en una base de datos

11 Terminos Básicos Eigen' : termino alemán se refiere a la matemática recursiva usada para analizar características faciales únicas. FRT (Face Recognition Thecniques) : Tecnicas de Reconocimiento Facial Aproximación holística: Referido al reconocimiento facial tomado en conjunto (Eingenface). Aproximación analítica: Referido al reconocimiento facial tomando como base la geometria de la cara (Eingenfeature).

12 Tipo y Nivel de Investigacion TIPO DESCRIPTIVO: Devido a que se pretende analizar y describir las caracteristicas del reconocimiento facial NIVEL EXPLICATIVO: Involucra las razones y causas por la cual se puede tomar en cuenta el analisis biometrico para casos en el cual su utilización sea prioritaria.

13 Muestra y Universo UNIVERSO: Todos los tipos de Reconocimiento Biométrico: Analisis Dactilar, Reconocimiento Facial, Iris, Retina, Geometría de la Mano, Voz, Estilo de escritura, etc. MUESTRA: Es el estudio de solo un tipo de reconocimiento de analisis biometrico El reconocimiento FACIAL

14 Recoleccion de Datos La recolección de datos que he usado para este trabajo es: INTERNET Entrevistas y Consultas a Expertos Textos y libros sobre el Reconocimiento de Patrones Biometricos

15 Reconocimiento de Patrones: Usos Verificación: El usuario se identifica mediante un método típicamente no biométrico, como un código (PIN) o una tarjeta, y se ha de comprobar (verificar) que la identidad proporcionada es correcta. Identificación: Se trata de averiguar la identidad del sujeto buscando en una base de datos una representación de parámetros biométricos que se corresponda con la lectura del sistema.

16 Reconocimiento de Patrones: Funcionamiento 1.Adquisición de datos. Representación de los patrones La entrada a un sistema de reconocimiento estadístico de patrones es un vector numérico que contiene los valores muestreados y cuantificados (o binarizados) de una serie de señales naturales. Espacio de representación: Con esta aproximación un patrón no es más que un punto en el espacio de representación de los patrones que es un espacio de dimensionalidad determinada por el número de variables consideradas Similaridad entre patrones: La tarea fundamental de un sistema de reconocimiento de patrones (clasificador) es la de asignar a cada patrón de entrada una etiqueta Variabilidad entre patrones: La suposición de un sistema de adquisición perfecto no deja de ser eso, una suposición. Los sistemas de adquisición introducen, indefectiblemente, cierta distorsión o ruido, lo que produce una variabilidad en la representación de los patrones.

17 Funcionamiento del Reconocimiento de Patrones 2. Selección y extracción de características El problema que se trata de resolver es el de extraer la información relevante 3. Módulo de clasificación El objetivo final de un sistema de Reconocimiento de Patrones es el etiquetar de forma automática patrones de los cuales desconocemos su clase.

18 Reconocimiento Facial La identificación por características faciales ha sido primeramente alimentada por el cambio en la tecnología de video multimedia, de esta forma se ha incrementado la presencia de cámaras en los lugares de trabajo y el hogar. El reconocimiento por características faciales es inherente en todos nosotros. Individuos específicos pueden ser distinguidos de una multitud con solamente verles la cara. Como resultado, este tipo de identificación es considerada como la mas natural dentro de los sistemas biométricos.

19 Reconocimiento Facial Características del Sistema: Sistema no invasivo. Permite la identificación de personas en movimiento. Sistema con posibilidad de camuflaje Reconocimiento de sujetos no dispuestos a cooperar. El sistema de captura necesita de una fuente de luz auxiliar. Susceptible a problemas de iluminación. Sistema vulnerable al reconocimiento de sujetos que se han sometido a operaciones de cirugía plástica

20 Reconocimiento Facial: Técnicas Lo sistemas de reconocimiento facial están englobados dentro de las técnicas FRT (Face Recognition Thecniques). Estas técnicas de aproximación al reconocimiento facial, pueden clasificarse en dos categorías según el tipo de aproximación holística o analitica Aproximacion Holística Cuando una identificación facial utiliza 'eigenface, el sistema interpreta cada imagen facial como un conjunto bidimensional de patrones brillantes y oscuros. Estas áreas son las consideradas 'eigenface'. Los patrones brillantes y oscuros son luego convertidos y representados como un algoritmo el cual es temporalmente almacenado como una combinación de 'eigenfaces'. Finalmente, la combinación actual de eigenfaces es comparada contra una base de datos de eigenfaces. Aproximacion Analítica Por otro lado, el 'eigenfeature' (analitica) trata de determinar las distancias entre las características faciales como la nariz, ojos, estructura ósea, boca y pestañas. La diferencia en este método es que la identificación facial captura la imagen y extrae estos eigenfeatures de la cara para luego ser comparados contra otros almacenados en una base de datos

21 Reconocimiento Facial: Técnicas La Lógica de las Redes Neuronales Un tipo de método usado es por medio de redes neuronales. Este tipo de tecnología puede emplear inteligencia artificial que requiere que el sistema aprenda de la experiencia. Las Redes neuronales mas usadas para el reconocimiento biométrico son las redes de contrapropagación que básicamente el método que usan es convertir una imagen en un vector de números y pasarla a la capa de entrada de la red. Termograma Facial Emplea una cámara infrarroja para capturar el patrón que conforman las arterias y venas bajo la piel. La ventaja de este sistema es que puede ser usado en la oscuridad y no es tan afectado por cambios en la posición de la cara.

22 Reconocimiento Facial: Técnicas Retratos Hablados Si no se tiene un sistema computarizado, esta identificación puede ser muy laboriosa y tardada. Módulo para el reconocimiento de rostros que nos permite obtener las características principales y posteriormente obtener la identificación de los rostros más similares que se encuentren en una base de datos criminalista.

23 Reconocimiento Facial: Aplicación A continuación presentamos un ejemplo de la aplicación de las FRT en el reconocimiento de imagen. Software Creado pro Atrasoft Simula un buscador usado por el FBI

24 Software Attrasoft A continuación presentamos un ejemplo de la aplicación de las FRT en el reconocimiento de imagen, software creado por Attrasoft. Este software utiliza la tecnica de redes neuronales, especialmente la red neuronal de Retropropagacion. La tarea central en un sistema de manejo de datos de imágenes es capturar imágenes que contengan similares características. El software Attrasoft provee a los usuarios unas herramientas para la captura de imágenes, simula un buscador usado por el FBI Este software esta hecho en Microsoft Visual Java ++, y su salida esta dada en una pagina web, los formatos que soporta este software son, los archivos JPG y los archivos GIF. Posee 2 principales parámetros de entrada: The Keys: key-image(s), or key-segment(s) Usado para saber que buscara el software The Search-Directory: El directorio de imagines donde se quedra buscar.

25 Entrenamiento Parametros Primarios Background Consiste en 2 tipos de filtro: Edge Filter y Thereshold Filter. El entrenamiento requiere especificar el tipo de background que se requiere, se puede especificar con el botón choice button Simetría Significa la similaridad dentro de ciertos tipos de condiciones. Por ejemplo considerando 2 imágenes, una con una cara en el centro y otra con la cara en una esquina, ahí se puede decir que hay imágenes similares. Posee 5 tipos de simetría: No symmetry (0); Translation symmetry (3); Scaling symmetry (4); Rotation symmetry (5); and Rotation and Scaling symmetries (6) Corte de segmento Va en un rango de 0 a 12. Este parámetro combina con el segmento de imágenes movidas a la esquinal tiene dos tipos de corte, largo y pequeño. Ademas aparecen los conceptos de escalación, traslación, rotación y deformación estos lo hemos visto en Geometria conputacional.

26 Busqueda Sensitividad Este parámetros va de un rango de o a 100. Para buscar pequeños segmentos, se usa la sensitividad alta, mientras que para búsquedas largas, se usa la sensitividad corta. Mientras mas alto sea el parámetro mas resultados se obtendrán Blurring Este es uno de los mas importantes parámetros de búsqueda, si se usa un software para comprimir una imagen, para cambiar la intensidad de una imagen, escalar o rotar una imagen, la imagen será descompuesta un BIT en el nivel de píxeles. Es necesario usar blurring Shave Cut, Shave Cut2 Trata con la forma de las imagenes y existen dos parámetros. Si tienes muchas imágenes diferentes, puede eliminar muchas imágenes al activar Shape Cut., esto puede significas el incremento de velocidad en la búsqueda de imágenes.

27 Conclusiones EL reconocimiento de imágenes es una herramienta que esta siendo cada vez mas usada en el mundo, por lo cual es necesario saber sobre la importancia del tema. Existen diversas técnicas para realizar el reconocimiento, pero no todas son de entera confianza. El reconocimiento de patrones exige el conocimiento de muchas formulas matemáticas, para la representación de patrones. Es necesario además el conocimiento de la geometría computacional, de una manera profunda. Personalmente me ha hecho comprender el funcionamiento de la red neuronal de retropropagación (backpropagation) para poder comprender un poco mas sobre el funcionamiento del software Attrasoft..


Descargar ppt "Analisis de Reconocimiento de Patrones Biometricos Reconcocimiento Facial."

Presentaciones similares


Anuncios Google