La descarga está en progreso. Por favor, espere

La descarga está en progreso. Por favor, espere

Sesión 04: Medidas de Posición Profesora: Dra. Alejandrina Gonzales Ochoa Estadística Aplicada a la Gestión Empresarial.

Presentaciones similares


Presentación del tema: "Sesión 04: Medidas de Posición Profesora: Dra. Alejandrina Gonzales Ochoa Estadística Aplicada a la Gestión Empresarial."— Transcripción de la presentación:

1 Sesión 04: Medidas de Posición Profesora: Dra. Alejandrina Gonzales Ochoa Estadística Aplicada a la Gestión Empresarial

2 1. Medidas de Tendencia Central

3 Calcular e interpretar los indicadores de tendencia central: Media aritmética, mediana y moda. Establecer relación entre las medidas de tendencia central para identificar formas de distribución. OBJETIVO

4 1. La Media Aritmética – Media aritmética de una población: – Media aritmética de una muestra: MEDIDAS DE TENDENCIA CENTRAL

5 Calcule e interprete la media aritmética para los datos correspondiente a la variable: número de hijos. Calcule la Media aritmética: Interprete: Los trabajadores de la empresa tienen en promedio dos hijos EJEMPLO 1

6 Todo conjunto de datos de nivel intervalo y de razón tiene un valor medio. Al calcular la media aritmética se incluyen todos los valores. Un conjunto de datos sólo tiene una media aritmética, es un valor único. La media aritmética es una medida muy útil para comparar dos o más poblaciones. La media aritmética es la única medida de ubicación donde la suma de las desviaciones de cada valor con respecto a la media aritmética, siempre será cero. Por tanto, se puede considerar a la media aritmética como un punto de equilibrio para un conjunto de datos. PROPIEDADES DE LA MEDIA ARITMÉTICA

7 Para datos que contienen uno o dos valores sumamente grandes o muy pequeños, la media aritmética no es un promedio adecuado para representar los datos. La media aritmética es inadecuada si existen intervalos con límites extremos abiertos para datos agrupados en una distribución tabla de distribución de frecuencias. DESVENTAJAS DE LA MEDIA ARITMÉTICA

8 Es un valor que divide a un conjunto de observaciones ordenadas en forma ascendente o descendente en dos grupos de igual número de observaciones, es decir el 50% de los datos toma valores menores o iguales a la mediana y el 50% restante valores superiores a la mediana. 2. LA MEDIANA

9 1)Ordene los datos (ascendente o descendente). 2)Ubicación de la mediana. Se presentan dos casos: a)Cuando n es IMPAR, la mediana es igual al valor que ocupa la posición central. b)Cuando n es PAR, la mediana es igual al promedio de los dos valores que ocupan la posición central. 3) La mediana es el dato que ocupa la posición i. Procedimiento para calcular la mediana: Me

10 Calcule e interprete la mediana para los datos correspondiente a la variable: número de hijos. n = 22 Calcule la mediana: 1) Ubicación de la mediana: 2) La mediana entonces será igual al promedio de los valores 11vo y 12vo términos de los datos ordenados, luego: Me = 2 Interprete: El 50% de los trabajadores tienen a lo más dos hijos y el 50% restante de los trabajadores tienen más de dos hijos. Ejemplo 2:

11 Es el valor de la observación que aparece con más frecuencia. La moda es especialmente útil para describir niveles nominales y ordinales de medición. Ejemplo 3: a) Sea el conjunto de datos. 2, 2, 5, 7, 9, 9, 9, 10, 10, 11, 13 Tiene moda Md = 9, porque es el dato que más se repite. b) El conjunto de datos 3, 5, 8, 10, 12, 16, 18 No tiene moda porque ningún valor se repite. c) El conjunto de datos 2, 3, 4, 4, 4, 5, 5, 7, 7, 7, 9 Tiene dos modas 4 y 7, porque 4 se repite tres veces al igual que 7 que también se repite tres veces. 3. LA MODA

12 La moda puede no existir, si existe, no siempre es la única. Cuando es un conjunto de valores o en una distribución existe una sola moda, se trata de una distribución UNIMODAL, si hay dos modas será BIMODAL y si presenta varias modas se llamará PLURIMODAL. La moda es una medida de tendencia central muy útil para variables cualitativas o nominales. Observaciones:

13 UBICACIÓN DE LAS MEDIDAS DE TENDENCIA CENTRAL EN LAS FORMAS DE DISTRIBUCIÓN

14 2. Medidas de Tendencia no Central

15 Calcular e interpretar los indicadores de tendencia no central: Percentiles Cuartiles OBJETIVO

16 Un percentil da información acerca de cómo se distribuyen los valores sobre el intervalo, desde el menor hasta el mayor. El p_ésimo percentil es un valor tal que por lo menos p por ciento de las observaciones son menores o iguales a este valor y por lo menos (100-p) por ciento de las observaciones son mayores a este valor. 1. PERCENTIL

17 Procedimiento para el cálculo del p_ésimo percentil: Paso 1: Ordene los datos de forma ascendente. Paso 2: Calcule un índice i, para ubicar el percentil. donde p es el percentil de interés y n es la cantidad de observaciones. Se presenta dos casos: a)Si i no es entero, i se redondea al inmediato mayor, el p-ésimo percentil es el dato que ocupa la posición i. b)Si i es entero, el p_ésimo percentil es el promedio de los valores de los datos ubicados en los lugares i e i+1. Paso 3: El percentil es el dato que ocupa la posición i.

18 Ejemplo 1: A continuación se presenta los datos para una muestra de 12 empleados del sector minero respecto a la variable sueldo mensual. Determinar el percentil 85. EmpleadoSueldo Mensual S/. EmpleadoSueldo Mensual S/. 1285072890 2295083130 3305092940 42880103325 52755112920 62710122880

19 Paso 1: Ordene los datos en forma ascendente. Paso 2: Ubicación del percentil 85 Paso 3: Como i no es entero, redondeamos al inmediato mayor. El percentil 85 es el datos que ocupa la posición 11. P85 = 3130. Interpretación: El 85% de los empleados del sector minero perciben sueldos mensuales menores o iguales a S/.3130 y el 15% restante perciben sueldos mensuales superiores a S/.3130

20 2. Cuartiles Un cuartil es una medida de posición que divide al total de las observaciones, debidamente ordenadas en cuatro partes de igual tamaño. Esto significa que entre cuartiles consecutivos se encuentra no más del 25 % del total de las "n" observaciones. Primer Cuartil, o Cuartil inferior, o percentil 25: El 25 % de las observaciones tienen valores menores o iguales a Q 1 y el 75 % restante tienen valores mayores a Q 1. Q1 = P25 ≤> XminXmax 25%

21 Segundo cuartil, o percentil 50 (también la mediana): Es el valor que está en el centro, por lo tanto coincide con la mediana Q 2 = Me. Tercer cuartil, o Cuartil superior, o percentil 75: El 75 % de las observaciones tienen valores menores o iguales a Q 3 y el 25 % restante tienen valores mayores a Q 3. XminXmax 25% Q3 = P75 ≤>

22 Ejemplo 2: Calcule e interprete el primer cuartil Variable: Sueldo mensual de los empleados del sector minero. Ubicación del primer cuartil: Como i es entero, de acuerdo con el paso 3b) el primer cuartil, o percentil 25 es el promedio del tercer y cuarto valor de los datos entonces: Interpretación: El 25% de los empleados del sector minero perciben sueldos mensuales menores o iguales a S/.2865 y el 75% restante perciben sueldos mensuales mayores a S/.2865.

23 Ejemplo 3: Calcule e interprete el tercer cuartil Variable: Sueldo mensual de los empleados del sector minero. Ubicación del tercer cuartil : Como i es entero, de acuerdo con el paso 3b) el tercer cuartil, o percentil 75 es el promedio del noveno y décimo valor de los datos entonces: Interpretación: El 75% de los empleados del sector minero perciben sueldos mensuales menores o iguales a S/.3000 y el 25% restante perciben sueldos mensuales mayores a S/.3000

24 Ejercicio: Se realizó un estudio para comparar los tipos de pago efectuado en la compra de artículos de primera necesidad en un supermercado. Para el estudio, se evalúan dos tipos de pago: efectivo y crédito. Se seleccionó al azar 15 personas de cada tipo de pago y se contabilizo el consumo diario (en nuevos soles). a)Identifique la variable, tipo de variable y unidad de análisis. b)Calcule las medidas de tendencia central: media aritmética, mediana y moda. Interprete los resultados para el grupo pago a crédito. c)¿La media aritmética que obtuvo en b) es un estadígrafo o un parámetro? ¿Por qué? d)Realice un análisis comparativo de acuerdo a las medidas de tendencia central. ¿Cuál es el indicador de promedio? e)Calcule las medidas de tendencia no central: Cuartiles y P35. Interprete los resultados obtenidos para el grupo pago efectivo. Efectivo 5857 565755585755595857545557 Crédito 626163626062636264626163626462


Descargar ppt "Sesión 04: Medidas de Posición Profesora: Dra. Alejandrina Gonzales Ochoa Estadística Aplicada a la Gestión Empresarial."

Presentaciones similares


Anuncios Google