La descarga está en progreso. Por favor, espere

La descarga está en progreso. Por favor, espere

Capítulo 4 Números Aleatorios. Elemento Central en la Simulación digital. Definición formal controvertida. Elemento esencial en muchas áreas del conocimiento.

Presentaciones similares


Presentación del tema: "Capítulo 4 Números Aleatorios. Elemento Central en la Simulación digital. Definición formal controvertida. Elemento esencial en muchas áreas del conocimiento."— Transcripción de la presentación:

1 Capítulo 4 Números Aleatorios

2 Elemento Central en la Simulación digital. Definición formal controvertida. Elemento esencial en muchas áreas del conocimiento Ingeniería, Economía, Física, Estadística, etc. Definición intuitiva: Una sucesión de números aleatorios puros, se caracteriza por que no existe ninguna regla o plan que nos permita conocer sus valores. Los números aleatorios obtenidos a través de algoritmos recursivos se llaman pseudoaleatorios. Números Aleatorios

3 Disponer de un buen generador de números aleatorios es clave en: Computación Aleatorizada Computación Evolutiva Algoritmos Aleatorizados Verificación de Algoritmos Validación de Algoritmos Criptografía etc. Números Aleatorios

4 La gran disponibilidad de generadores de números aleatorios en muchos entornos y compiladores puede llevarnos a pensar que para un usuario de la simulación no sería necesario estudiar estas cuestiones. Una lección del pasado reciente nos obliga a sacar lecciones y actuar con mucho cuidado con dichos generadores (RANDU - IBM). El Uso progresivo de modelos de simulación cada vez más detallados exige una mayor calidad de los generadores de números aleatorios. Números Aleatorios

5 Algunas ideas o propiedades de los generadores I. Lagarias (1993) publicó un trabajo titulado Pseudo Random Numbers en Statistical Science. Donde estudia algunas propiedades tales como: Expansividad : Una aplicación es expansiva si La idea es escoger d como una aplicación expansiva de manera que la inestabilidad computacional proporcione aleatoriedad. Números Aleatorios

6 No Linealidad: La composición de aplicaciones no lineales puede conducir a comportamientos crecientemente no lineales Ej: d(x) = x 2 ; d (n) (x) = x 2n Complejidad Computacional: La aleatoriedad de Kolmogorov, también denominada incomprensibilidad computacional. Consiste en constatar si la aleatoriedad de una sucesión de números es incomprensible (problema decidible). Impredecibilidad Números Aleatorios

7 DEF 1: Kolmogorov (1987) [Complejidad Algorítmica] Una sucesión de números es aleatoria sino puede producirse eficientemente de una manera más corta que la propia serie. DEF 2: LEcuyer (1990) [Impredicibilidad] Una sucesión de números es aleatoria si nadie que utilice recursos computacionales razonables puede distinguir entre la serie y una sucesión de números verdaderamente aleatoria de una forma mejor que tirando una moneda legal para decidir cuál es cuál. Obs: Esta definición conduce a los denominados generadores PT-perfectos usados en Criptografía. Números Aleatorios

8 DEF 3: Un Número aleatorio es una realización de una variable aleatoria que tiene asociada una ley de probabilidades F, en un espacio o modelo de Probabilidades (,, P). Obs: Una particular Ley de Probabilidad base para la generación de números pseudo-aleatorios es: u 1, u 2,..., u n : es la uniforme (0 ; 1) u i ~ U(0,1). DEF 4: Una sucesión de números aleatorios {u 1, u 2,..., u n } es una sucesión de números U(0;1), si tiene las mismas propiedades estadísticas relevantes que dicha sucesión de números aleatorios. Números Aleatorios

9 DEF 5: Una sucesión de números aleatorios {u i } es aleatorio si h-úplas de números sucesivos no superpuestos se distribuyen aproximadamente. como una [0,1] h, con h=1,2,..,n, para n suficientemente grande. Obs: h=2 tenemos (u i,u i+1 ), i=1,2,..n, se distribuye como una ley uniforme en [0,1] 2. Existe una gran de métodos para generar {u i } U(0,1) : -Uniformente distribuidas - Independientes - E[U]= ½ ; V[U]= 1/12 - Período largo Números Aleatorios

10 A las propiedades estadísticas anteriores se deben agregar otras relativas a la eficiencia computacional: Velocidad de respuesta Consumo de memoria Portabilidad Parsimonia Reproducibilidad Mutabilidad Período Números Aleatorios

11 Métodos de Generación de Números Aleatorios 1.- Método de los cuadrados medios 2.- Métodos Congruenciales 3.- Método de registros desfasados [Semilla - Algoritmo - Validación] P 1 : Obtener semilla (valores iniciales) P 2 : Aplicación de Algoritmos recursivos P 3 : Validación del conjunto de datos generados (Test de Aleatoriedad) Números Aleatorios

12 Consiste en que cada número de una sucesión es producido tomando los dígitos medios de un número obtenido mediante la elevación al cuadrado. P 1 : Obtener semilla (valores iniciales 445) P 2 : Aplicación de Algoritmos recursivos (elevar al cuadrado) P 3 : Validación del conjunto de datos generados Métodos de los cuadrados Medios

13 Ejemplo: Consideremos la semilla 445 X X 2 N° Aleatorio 445 1| 9802 | 5 0, | 0792 | 04 0, | 2726 | 4 0, Métodos de los Cuadrados Medios

14 X n+1 = (a X n + b) mod m ; Los parámetros del algoritmo se llaman - amultiplicador - bsesgo - mmódulo - X o semilla (valor inicial) Generadores Congruenciales

15 Obs: 1.- Cuando b=0 el generador se denomina Generador congruencial multiplicativo. 2.- Cuando b 0 el generador se denomina Generador congruencial mixto. 3.- A pesar de la simplicidad una adecuada elección de los parámetros de a, b y m, permite obtener de manera eficiente una larga e impredecible sucesión de números como para considerarse aleatoria. Generadores Congruenciales

16

17 Algunas observaciones de las salidas de los generadores congruenciales: i) Un generador congruencial tiene ciclos iI) La longitud del ciclo depende de la selección de los parámetros (ver caso 1) y 3) ) iii) Dentro de selecciones de parámetros que conducen a la misma longitud, algunas salidas parecen más aleatorias que otras. iv) La representación de pares ( X i, X i+1 ) sugiere que estos se disponen en un número finito de hiperplanos. Generadores Congruenciales

18 Los resultados teóricos que veremos a continuación facilitan la elección de los parámetros de a y b su demostración puede verse en el texto clásico D. Knuth (1981): The Art of Computer Programming. Ed. A. Wesley Vol N°2 Generadores Congruenciales

19 Proposición 2.1 Un generador congruencial tiene su período máximo si y sólo si: i) m.c.d (b, m) = 1 (primos relativos) ii) a = 1 mod p ; para cada factor primo p de m. iii) a = 1 mod 4 ; si 4 divide a m. Puesto que b esta asociado en la práctica con el efecto de traslación, inicialmente asumiremos ( b=0), es decir partiremos estudiando los generador congruencial multiplicativos. Generadores Congruenciales

20 Dem: Donald Knuth Vol 2 (1981) Obs: 1) Lo anterior sugiere elegir m lo más grande posible, para asegurarnos un período largo (posibles elecciones de m son; m= , m= ) 2) Sea p el período de la secuencia de números aleatorios, si p=m el generador se llama de período completo. 3) Si m es un número primo entonces el máximo período se obtiene ssi a =1 Generadores Congruenciales

21 Proposición 2.2 Sea un generador multiplicativo (b=0) [X n+1 = a X n mod m] tiene período p=(m-1), sólo si p es primo. El periodo divide a (m-1) y es (m-1) si y sólo si a es una raíz primitiva de m-1, es decir a (m-1)/p 1 mod m, para todos los factores primos p de (m-1). Proposición 2.3 Si a es un raíz primitiva de m, a k mod m, lo es siempre que k y m-1 sean primos relativos. Equivalentemente Si a es una raíz primitiva de m, a k mod m lo es siempre que ; mcd(k,m-1)=1 Generadores Congruenciales

22 Dem: B. Ripley (1987) Stochastic SimulationEd. John Wiley. pp 47 Obs: 1) En general los generadores congruenciales son de la forma X n+1 = g ( X n, X n-1,...., X n-k,...) mod m g (x) = a X n g (x) = a X n + b g (x) = a X n 2 + b X n + c Usando g (x) = (a 1 X n-1 + a 2 X n a r X n-r ), se obtiene un generador de Fibonacci retardado. La teoría de estos generadores se puede ver en Marsaglia (1985)] Generadores Congruenciales

23 2) Una buena elección de m, permite obtener un generador eficiente (ciclo máximo). Pero aún se debe estudiar con más detalle la elección de a y b, pues se tienen muchos grados de libertad. 3) Un buen generador congruencial debe ser: i) De máximo período ii) Su salida debe parecer aleatoria iii) Poder implementar de forma eficiente en aritmética de 32 bits. Generadores Congruenciales

24 Un algoritmo de muy fácil implementación del tipo congruencial es m = a = 7 5 (raíz primitiva de m) X n = 7 5 X n-1 mod ( ) u n = Dicho generador se encuentra en las bibliotecas IMSL y NAG Generadores Congruenciales

25 La rutina RANDU, que IBM proporcionaba para sus equipos consideraba un modelo congruencial multiplicativo con m = 2 31 ; a = ; b = 0 X n = X n-1 mod (2 31 ) u n = ¡ Este generador proporciona tripletas consecutivas de números que caen en 15 planos ! Lo que sugiere cierta previsiblidad en su salida (Mal Generador) Generadores Congruenciales

26 Barsaglia (1968) demostró que sucesiones consecutivas no superpuestas de n números aleatorios obtenidos de generadores multiplicativos caen en, a lo sumo [n! m] 1/n hiperplanos paralelos. Algunas cotas de casos representativos n=3 n=5 n=7 n=9 n=10 m = m = Es decir, en un computador con palabras de 32 bits, menos de 41 hiperplanos contendrán las 10-úplas Generadores Congruenciales

27 En teoría puede conseguirse que un buen generador con m = 2 32 produzca puntos independientes en un cubo de dimensión 3, siendo el mínimo número de hiperplanos que contiene estos puntos 10 8, en contraste con los Para la famosa rutina RANDU de IBM, X n = X n mod (2 31 ) las tripletas consecutivas de números caen en 15 planos. Generadores Congruenciales

28 Se basa en Generadores lineales recursivos múltiples El estudio de este generador se asocia al Polinomio característico. sobre un álgebra finita F m, con m elementos. [Niederreiter 1992] Generadores de Registros Desfasados

29 [Niederreiter 1992] Cuando el polinomio es primitivo el período es (m k -1). Debido a la complejidad del análisis para m grande, habitualmente se elige un m pequeño, generalmente 2 obteniendo generadores de bits de la forma donde a k = 1 ^ a i {0, 1} Generadores de Registros Desfasados

30 La adición módulo 2 es equivalente al XOR (ó exclusivo) 0 XOR 0 = 00 XOR 1 = 1 1 XOR 1 = 01 XOR 0 = 1 Esto nos permite implementar registros de desplazamiento Un generador propuesto Tausworthe (1985) Generadores de Registros Desfasados

31 En este caso los primeros q bits deben ser especificados, esto es análogo a la semilla de los generadores congruenciales. Este tipo de generador depende del largo de la palabra Ejemplo:h = 3; q = 5 ; b 1 = b 2 = b 3 = b 4 = b 5 = 1 b 6 = (b 3 + b 1 ) mod 2 = 2 mod 2 = 0 b 7 = (b 4 + b 2 ) mod 2 = 2 mod 2 = 0 b 8 = (b 5 + b 3 ) mod 2 = 2 mod 2 = 0 b 9 = (b 6 + b 4 ) mod 2 = 1 mod 2 = 1 b 10 = (b 7 + b 5 ) mod 2 = 1 mod 2 = 1... b 42 = (b 39 + b 37 ) mod 2 = 2 mod 2 = 0 Generadores de Registros Desfasados

32 Transformar la sucesión {b i } en un número aleatorio U (0,1) Consideremos {b i } b 1 b 2 b 3 b 4 b 5 b 6 b 7 b 8 b 9 b 10 b 11 b b 41 b Conversión del Generador Binario

33 Consideremos = 4 y 1 = b b b b = = 15 u 1 = y 2 = b b b b = = 8 u 2 = y 3 = b b b b = = 13 u 3 =.... y así sucesivamente Conversión del Generador Binario

34 Dada la estructura reticular de los generadores lineales, algunos autores sugirieron utilizar generadores no lineales. (Ver Niederreiter (1992)) Usar un generador con función de transición lineal, produciendo una transformación no lineal del estado en su salida. Usar un generador con función de transición no lineal. Generadores no Lineales

35 Una forma de incrementar el periodo e intentar evitar regularidades que muestren los generadores lineales es combinar (mezclar) diferentes generadores para obtener generadores híbridos de mejor calidad que los generadores originales. Muchas de las combinaciones propuestas son heurísticas y algunas con resultados bastantes pobres. Por ejemplo sean e dos sucesiones aleatorias, una sucesión combinada sería : Z i = X i Y i donde es alguna operación binaria Combinación de Generadores

36 Generadores Paralelos de números aleatorios. Sincronización; reproductibilidad; gasto transición ] Generadores de Fibonacci retardados [ Sincronización; reproductibilidad; gasto transición ] Generadores Comerciales: IMSLGenerador congruencial multiplicativo m = a = 16807; ; Otros Generadores

37 Finalmente la fase de validación se basa en ciertas propiedades estadísticas que deben cumplirse a la salida de los generadores de n° aleatorios. Los Test empíricos que veremos a continuación son genéricos y pueden usarse en la evaluación de generadores de n° aleatorios, en generadores de variables aleatorias y en la modelación de entradas de modelos de simulación. La mayoría de los Test se encuentran disponibles en paquetes estadísticos comerciales. SAS, Statistica, etc. Validación de Generadores Congruenciales

38 1) Test Este es un test de Bondad de Ajuste. Es poco potente, por lo que permite justificar el rechazo de una hipótesis, pero proporciona escaso apoyo en la aceptación. Dada una muestra X 1, X 2,..., X n de una F x ( x ) desconocida. Se desea contrastar. H o : F x ( x ) = F o ( x ) v/s H 1 : F x ( x ) F o ( x ) Validación de N os Aleatorios

39 Efectuando una partición del soporte de X en k subconjuntos I 1, I 2,..., I k : f i : frecuencia absoluta del subconjunto i-ésimo ( I i ) e i : número de observaciones esperadas en I i bajo H o ~ asint Validación de N os Aleatorios

40 Obs:1) Este Test considera aleatoridad de F o = U(0,1) 2) Este Test también permite contrastar la uniformidad S-dimensional de X 1 = (u 1, u 2,..., u s ); X 2 = (u s+1, u s+2,..., u 2s );... X n = (u (n-1)s+1,..., u ns ) en F o = [0,1] s [Distribución uniforme en el hipercubo] Validación de N os Aleatorios

41 2) Test de Kolmogorov - Smirnov (Test K-S) Sea F o una función de distribución continua y sea F n la función de distribución empírica de la muestra. Bajo H o : F x (x) = F o (x) se espera que F n se aproxime a F o D n = Sup | F n (x) - F o (x) | La distribución exacta de D n está tabulada para valores n 40 y distintos niveles de significación. Para muestras grandes se utiliza la distribución asintótica de D n dada por x R Validación de N os Aleatorios

42 Obs: En el caso particular de aleatoridad se considera X (1) < X (2) <.... < X (n) estadísticos de orden F o (X (i) ) = X (i) ^ F n (X (i) ) = i / n D n = Test de Kolmogorov - Smirnov

43 3) Test de Rachas Dada la sucesión de n observaciones construimos la sucesión de símbolos binarios definida por Definimos racha creciente (decreciente) de longitud L a un grupo seguido de L números 1(+) ó números 0(-). Contando el número de rachas. Bajo aleatoridad de la muestra se espera que su distribución asintótica sea normal: N Validación de N os Aleatorios

44 Ejemplo: Considere la siguiente secuencia de 20 números aleatrorios L=14 E[L]= 13, V[L]=3.23 Z = (14 -13) / Z = 0.55 comparado con el valor crítico N ( 13 ;3.23) El supesto de independencia no puede ser rechazado

45 Test de Rachas por encima y debajo de la mediana. Se cuentan el número de observaciones que se sitúan a un mismo lado de la mediana. La distribución asintótica del número de rachas bajo aleatoridad es normal: N Test de Rachas

46 4) Test Serial Este Test se usa para contrastar el grado de aleatoriedad entre números aleatorios sucesivos de una secuencia. [Extensión del test Chi-Cuadrado] Sea X 1 = (u 1,..., u k ) X 2 = (u k+1,..., u 2k )... X n = (u (n-1)k+1,..., u nk ) Consideremos la n (k-úplas). Se desea contrastar que X 1, X 2,..., X n son v.a.i.i.d. uniformemente distribuidas en el hipercubo k-dimensional unitario. Test Serial

47 Dividiendo el hipercubo r k en hipercubos elementales de volumen 1/r k y sea V j1, j2,..., jk el número de k-úplas que caen dentro del elemento usando la estadística Test Serial

48 Caso Especial ( k =2) X 1 = (u 1, u 2 ) X 2 = (u 3, u 4 )... X n/2 = (u (n-1), u n ) Particularmente el eje X e Y en r subintervalos de igual longitud, generando r 2 -cubos del mismo tamaño. El número de pares esperado por cubo es Test Serial

49 Entonces la estadística Sea n ij : el número de pares en el cuadrado (i, j) i = 1,r j =1,r Test Serial

50 Otros Test son: Test de Permutaciones Test de Poker Test de Dependencia Test de longitud de rachas etc. Validación de N os Aleatorios


Descargar ppt "Capítulo 4 Números Aleatorios. Elemento Central en la Simulación digital. Definición formal controvertida. Elemento esencial en muchas áreas del conocimiento."

Presentaciones similares


Anuncios Google