La descarga está en progreso. Por favor, espere

La descarga está en progreso. Por favor, espere

La transformada de Laplace

Presentaciones similares


Presentación del tema: "La transformada de Laplace"— Transcripción de la presentación:

1 La transformada de Laplace

2 La transformada de Fourier
La transformada de Fourier para señales periódicas es un espectro discreto de frecuencias. La primera ecuación es la de síntesis y la otra la de análisis.

3 La transformada de Fourier
Existen funciones no periódicas como la función escalón, la función rampa, o la función impulso, etc. El espectro de estas funciones es un espectro continuo en los que se puede encontrar energía en cualquier intervalo de frecuencia diferente a cero, por pequeño que éste sea.

4 La transformada de Fourier

5 La transformada de Fourier
Existen funciones del tiempo que al querer encontrar su equivalente en Fourier, nos encontramos con una expresión indeterminada al sustituir los límites de integración. Este problema surge cada vez intentamos obtener la transformada de Fourier de una función del tiempo cuyo

6 La transformada de Fourier
Algunas de estas funciones son el escalón, signo, etc. Aunque su equivalente de Fourier si exista y se obtenga a partir de ciertos resultados básicos, existen ciertas funciones como la exponencial creciente, señales aleatorias, y otras que no son absolutamente integrales.

7 La transformada de Fourier
Además las técnicas de Fourier no permiten analizar los sistemas a partir de las condiciones iniciales que este presenta. Estas dos objeciones se superan al usar la transformada de Laplace, que además tiene una nomenclatura más sencilla y una mayor facilidad de manejo.

8 Frecuencia compleja Antes de comenzar el desarrollo de la Transformada de Laplace, se dará una definición puramente matemática de la frecuencia compleja, para luego desarrollar gradualmente una interpretación física mientras avanza el curso.

9 Frecuencia compleja Se dice que cualquier función que puede escribirse en la forma donde y son constantes complejas (independientes del tiempo), está caracterizada por la frecuencia compleja Para conocer la frecuencia compleja de una función dada por inspección, es necesario escribirla de la forma anterior.

10 Frecuencia compleja Considerese la siguiente función senoidal exponencialmente amortiguada donde

11 Frecuencia compleja La parte real de está asociada con la variación exponencial; si es negativa, la función decrece conforme t aumenta, si es positiva aumenta, y si es cero, la amplitud de la senoidal es constante. Mientras mayor sea la magnitud de la parte real de , mayor será la rapidez del aumento o disminución exponencial.

12 Frecuencia compleja La parte imaginaria de describe la variación senoidal; específicamente, representa la frecuencia angular. Una magnitud grande de la parte imaginaria indica una variación más rápida respecto al tiempo. Por lo tanto, valores mayores de la magnitud de , indican una variación más rápida respecto al tiempo.

13 Frecuencia compleja Se denota por a la parte real, y por a la parte imaginaria: es la frecuencia compleja, es la frecuencia neperiana y es la frecuencia angular.

14 La transformada de Laplace
La transformada de Laplace se presentará como un desarrollo o evolución de la transformada de Fourier, aunque se podría definir directamente. El objetivo es hacer que la variación en el tiempo sea de la forma

15 La transformada de Laplace
Para lograrlo se considerará la transformada de Fourier de en vez de , haciendo entonces y su respectiva transformada de Fourier

16 La transformada de Laplace
tomando la transformada inversa de Fourier se obtiene

17 La transformada de Laplace
Ahora se sustituye por la variable compleja , y como es constante, donde la constante real se incluye en los límites para garantizar la convergencia de la integral impropia. En términos de

18 La transformada de Laplace
La ecuaciones anteriores definen el par de la transformada bilateral de Laplace. Puede pensarse que la transformada bilateral de Laplace expresa a como la sumatoria (integral) un número infinito de términos infinitesimalmente pequeños cuya frecuencia compleja es

19 La transformada de Laplace
La transformada de Laplace que se toma con límite inferior define la transformada unilateral de Laplace, la transforma inversa sigue inalterada, pero sólo es válida para

20 La transformada de Laplace
También se puede usar el símbolo para indicar la transformada directa o inversa de Laplace:

21 La transformada de Laplace
Linealidad de Laplace

22 La transformada de Laplace
Función exponencial

23 La transformada de Laplace
Función escalón

24 La transformada de Laplace
Función rampa

25 La transformada de Laplace
Funciones de la forma

26 La transformada de Laplace
Función senoidal

27 La transformada de Laplace
Función cosenoidal

28 La transformada de Laplace
Funciones desplazadas en el tiempo

29 La transformada de Laplace
Función pulso

30 La transformada de Laplace
Función impulso

31 La transformada de Laplace
Funciones desplazadas en la frecuencia

32 La transformada de Laplace
Cambio de la escala de tiempo

33 La transformada de Laplace
Teorema de diferenciación real

34 La transformada de Laplace
Teorema del valor final Si f(t) y su derivada se pueden transformar por el método de Laplace, y si existe el limite de f(t) cuando t tiende a infinito.

35 La transformada de Laplace
Teorema del valor inicial Si f(t) y su derivada se pueden transformar por el método de Laplace, y si existe el limite de sF(s) cuando s tiende a infinito.

36 La transformada de Laplace
Teorema de integración real

37 La transformada de Laplace
Teorema de diferenciación compleja

38 La transformada de Laplace
Integral de convolución

39 La transformada de Laplace
Transformada inversa de Laplace Integral de conversión Tablas Fracciones parciales

40 La transformada de Laplace
Fracciones parciales con polos distintos Considere F(s) escrita en la forma factorizada para m<n

41 La transformada de Laplace
Si F(s) sólo involucra polos distintos, puede expandirse en una suma de fracciones parciales simples de la siguiente manera:

42 La transformada de Laplace
en donde ak(k=1,2,...,n) son constantes y se denominan como el residuo del polo en s=-pk. El valor de ak se encuentra multiplicando ambos miembros de la ecuación anterior por (s+pk) y suponiendo que s=-pk, esto nos lleva a

43 La transformada de Laplace
Se observa que todos los términos expandidos se cancelan con excepción de ak. Por lo tanto el residuo ak se encuentra a partir de

44 La transformada de Laplace
Encontrar la transformada inversa de Laplace de

45 La transformada de Laplace

46 La transformada de Laplace
Fracciones parciales con polos múltiples Se usará un ejemplo para demostrar como obtener la expansión en fracciones parciales de F(s)

47 La transformada de Laplace


Descargar ppt "La transformada de Laplace"

Presentaciones similares


Anuncios Google