La descarga está en progreso. Por favor, espere

La descarga está en progreso. Por favor, espere

Se llama mosaico a todo recubrimiento del plano mediante piezas llamadas teselas que no pueden superponerse, ni pueden dejar huecos sin recubrir y en.

Presentaciones similares


Presentación del tema: "Se llama mosaico a todo recubrimiento del plano mediante piezas llamadas teselas que no pueden superponerse, ni pueden dejar huecos sin recubrir y en."— Transcripción de la presentación:

1

2 Se llama mosaico a todo recubrimiento del plano mediante piezas llamadas teselas que no pueden superponerse, ni pueden dejar huecos sin recubrir y en el que los ángulos que concurren en un vértice deben de sumar 360 grados. Existen muchas formas de obtener un mosaico. Los más sencillos están formados por un único tipo de polígono regular, como el triángulo equilátero, el cuadrado o el hexágono regular, ya que: 1.- La medida del ángulo interior de un triángulo equilátero es 60º, por lo tanto al unirse 6 triángulos equiláteros en un vértice completan 360º. 2.- La medida del ángulo interior de un cuadrado es 90º, por lo tanto al unirse 4 cuadrados en un vértice completan 360º. 3.- La medida del ángulo interior de un hexágono regular es 120º, por lo tanto al unirse 3 hexágonos en un vértice completan 360º. Además de los mosaicos regulares se pueden generar mosaicos utilizando polígonos irregulares, por ejemplo con: triángulos, cuadriláteros, pentágonos,… ¿QUÉ ES UN MOSAICO?

3 Tomamos como base un polígono que recubre el plano y realizamos con él distintas transformaciones consistentes en recortar una o varias partes del polígono de partida para situarlas, mediante giros o traslaciones, en otra posición. El polígono resultante comparte con el original dos propiedades fundamentales: 1.- Sigue recubriendo la superficie. 2.- Los dos tienen la misma área. En algunas ocasiones es muy difícil reconocer el polígono inicial, sobre todo en las nuevas formas abstractas, de animales o de plantas, pero en la mayoría de los casos los polígonos generadores son cuadrados o triángulos equiláteros. DISEÑANDO UN MOSAICO

4 Los conocimientos geométricos y artísticos de los artesanos islámicos hicieron posible la obtención de los llamados polígonos nazaríes. Los más conocidos son: el hueso, el pétalo, el avión, el huso y la pajarita. El hueso nazarí es un polígono cóncavo de doce lados, se obtiene a partir de un cuadrado en el que se recortan dos trapecios de dos lados opuestos y se colocan mediante giros en los otros dos lados también opuestos. Como en todos los polígonos nazaríes se conserva el área del polígono inicial. MOSAICOS NAZARÍES: EL HUESO

5 La dinastía nazarí, descendiente de Yusuf ben Nazar, reinó en Granada desde el siglo XIII al XV. Granada en general, y La Alhambra, en particular, vivieron entonces una época de esplendor que ha quedado reflejada en sus construcciones. Una tesela utilizada para recubrir los zócalos de la Alambra es la conocida como pétalo nazarí esta figura se obtiene a partir de un rombo formado por dos triángulos equiláteros, mediante la traslación de dos pequeños segmentos circulares que se recortan de dos de los lados y se colocan en los lados paralelos. El pétalo ha sido utilizado por otras culturas y religiones para recubrir superficies, por ejemplo en la catedral de Burgos. MOSAICOS NAZARÍES: EL PÉTALO

6 Un polígono nazarí tiene la misma área que el polígono del que procede (principio de conservación de área). Además, el carácter recubridor del polígono de partida es heredado por el polígono nazarí obtenido. Los mosaicos construidos con estos polígonos, sin considerar el color de las teselas, son monoédricos, es decir, generados por una única tesela. É l avión o clavo es otro polígono nazarí que procede de la transformación de un cuadrado. En la animación se ve cómo el cuadrado genera el polígono recubridor cóncavo de ocho lados. MOSAICOS NAZARÍES: EL AVIÓN

7 De construcción similar al hueso, esta figura cuyos lados son cuatro arcos de circunferencia, se obtiene a partir de un cuadrado. Los mosaicos formados por husos aparecen frecuentemente en las paredes azulejadas del Alcázar de Sevilla. MOSAICOS NAZARÍES: EL HUSO

8 Es, tal vez, el más conocido de los polígonos nazaríes, curiosamente esta forma está delimitada al igual que el pétalo, por arcos de circunferencia en vez de por segmentos rectos como un polígono convencional. No nos ha llegado información de cómo los maestros nazaríes trazaban este polígono, pero los matemáticos han encontrado varias formas de construirlo, una de ellas es a partir de un triángulo equilátero, en el que se recortan en cada lado un segmento circular para colocarlo en el mismo lado mediante un giro de 180º. Se pueden ver mosaicos generados por pajaritas multicolores en la Alhambra y en el Alcázar de Sevilla alternando el blanco y negro. MOSAICOS NAZARÍES: LA PAJARITA

9 MOSAICOS DE ESCHER: CABALLOS Y CABALLEROS Escher dibujó en junio de 1946 este mosaico de título Horseman. La técnica utilizada es la pintura de color al agua. Este dibujo es un bello ejemplo de la generación de un mosaico mediante el movimiento llamado deslizamiento que es la combinación de una simetría y de una traslación. Observa que la procesión de caballos y caballeros blancos se obtiene por traslación. Un conjunto negro se obtiene por deslizamiento de uno blanco. La traslación sucesiva del caballo y caballero negros genera la procesión de motivos negros.

10 MOSAICOS DE ESCHER: LAGARTIJAS QUE SE MUERDEN LA COLA Escher diseñó esté mosaico, titulado Lizard, en 1963, utilizando como referente otro que había dibujado en 1941 en dos colores. Alrededor de un punto se sitúan 8 lagartijas de cuatro colores diferentes, de forma que dos lagartijas consecutivas se muerden la cola para formar un motivo que se repite cuatro veces. La alternancia de los colores hace que aparezcan las lagartijas de un mismo color, dispuestas en círculos entrelazados.

11 MOSAICOS DE ESCHER: PERSECUCIÓN DE MARIPOSAS Pintado por Escher en 1948, su título es Butterfly y apareció publicado en Art and Science y en Escher on Escher. La alternancia de los tres colores juega un papel muy importante en la generación del mosaico. Observa una mariposa y busca la que se obtiene girándola 60º en el sentido contrario de las agujas del reloj, vuelve a girarla varias veces. ¿Cuántos giros de 60º necesitas realizar para volver a obtener la primera mariposa? Se unen 6 mariposas en la que se alternan dos colores, el tercer color interviene en el lunar de las alas que se unen. Así, si tres mariposas son rojas y tres azules, los seis lunares alrededor del centro de giro son amarillos.

12 MOSAICOS DE ESCHER: PECES DE COLORES Basándose en la propiedad recubridora de los triángulos equiláteros Escher diseñó este mosaico en Cada pez está creado a partir de un triángulo equilátero, por lo tanto, es necesario que seis peces se unan por la cola para formar 360º. Se alternan tres colores: rojo, azul y amarillo. Con un poco de imaginación se puede ver que los seis peces son los pétalos de una margarita, cuyo centro está formado por las seis colas.

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27


Descargar ppt "Se llama mosaico a todo recubrimiento del plano mediante piezas llamadas teselas que no pueden superponerse, ni pueden dejar huecos sin recubrir y en."

Presentaciones similares


Anuncios Google