La descarga está en progreso. Por favor, espere

La descarga está en progreso. Por favor, espere

Antiguamente conocidos como complejos. Contienen un átomo o ión central que es un metal rodeado por un grupo de iones o moléculas Tiende a mantener su.

Presentaciones similares


Presentación del tema: "Antiguamente conocidos como complejos. Contienen un átomo o ión central que es un metal rodeado por un grupo de iones o moléculas Tiende a mantener su."— Transcripción de la presentación:

1

2 Antiguamente conocidos como complejos. Contienen un átomo o ión central que es un metal rodeado por un grupo de iones o moléculas Tiende a mantener su identidad inclusive en solución, aunque puede haber disociaciones parciales.

3 Se pueden formar cationes o aniones complejos: –La carga eléctrica depende de las cargas del átomo central y de los iones o moléculas que lo rodean. Ejemplos de este tipo de compuesto son la clorofila (magnesio) y la hemoglobina (hierro)

4 Es muy difícil establecer cuando fue descubierto el primer compuesto de coordinación. El primero del que se tiene noticia es el azul de Prusia K[Fe 2 (CN) 5 ] y el cloruro de hexamincobalto (III) [Co(NH 3 ) 6. Cl 3 ] en 1789.

5 Las teorías químicas de la época no pudieron explicar las observaciones hechas durante los experimentos. No se podía entender como dos sustancias cuyas valencias estaban saturadas como son el CoCl 3 y el NH 3, podían combinarse para formar otro compuesto estable.

6 En el laboratorio es muy fácil sintetizar un compuesto de coordinación. Por lo general se preparan por la reacción entre una sal de un metal con otra molécula o ion que actúa como ligante.

7 Ejemplo: Solución clara Ag + + Cl - AgCl pp blanco AgCl pp blanco + 2NH 3 Ag(NH 3 ) Cl - Solución transparente

8 Al agregar una solución de nitrato de plata a una solución recién preparada de CoCl 3.6NH 3 precipitan inmediatamente los tres iones cloruro, pero si se adiciona CoCl 3.5 NH 3 solamente precipitan dos iones cloruros.

9 Complejo Número de Cl - que precipitan Formulación actual CoCl 3. 6NH 3 3 Co(NH 3 ) 6 3+ Cl 3 - Co(NH 3 ) 6 3+ Cl 3 - CoCl 3. 5NH 3 2 Co(NH 3 ) 5 Cl Cl 2 Co(NH 3 ) 5 Cl Cl 2 CoCl 3. 4NH 3 1 Co(NH 3 ) 4 Cl 2 Cl Co(NH 3 ) 4 Cl 2 Cl Se definió el número de iones cloruro como AgCl

10 Muchos de los compuestos presentan color al hacerlos reaccionar, tambien cambian durante las reacciones. Ciertos complejos existen en dos formas diferentes que tienen la misma composición química.

11 Las formas verde y violeta del CoCl 3.4NH 3 son un ejemplo:

12 El conocimiento de la naturaleza de los compuestos de coordinación se debe a Alfredo Werner, quien a los 26 años propuso lateoría que se conoce como teoría de la coordinacón de Werner. A continuación se amplia sobre el concepto de valencia.

13 Postulados más importantes: –La mayor parte de los elementos poseen dos tipos de valencia, primaria y secundaria. –Los elementos tienden a satisfacer ambas valencias. –Las valencias secundarias están dirigidas hacia posiciones fijas en el espacio.

14 [3 Cl - ] [2 Cl - ]

15 [Cl - ]

16 Primero se escribe el catión y luego el anión. Aniones : terminan en ato (sales), ico (ácidos). Cationes y neutros : no se emplea ninguna terminación. Isómeros geométricos : Cis (90º) y trans (180º). Isómeros ópticos : dextro ( + ) y levo( - ).

17 NombreFórmula Trinitrotriamincobalto(III) Co(NH 3 ) 3 (NO 2 ) 3 neutro Bisacetilacetonato de cobre II Cu(CH 3 COCHCOCH 2 ) 2 Sulfato de cloronitrotetraminplatino IV Pt(NH 3 ) 4 (NO 2 ) Cl SO 4 catión Tetracianatodiamincromato (III) de amonio NH4 Cr(NH 3 ) 2 (SCN) 4 anión NombreFórmula Trinitrotriamincobalto(III) Co(NH 3 ) 3 (NO 2 ) 3 neutro Bisacetilacetonato de cobre II Cu(CH 3 COCHCOCH 2 ) 2 Sulfato de cloronitrotetraminplatino IV Pt(NH 3 ) 4 (NO 2 ) Cl SO 4 catión Tetracianatodiamincromato (III) de amonio NH4 Cr(NH 3 ) 2 (SCN) 4 anión

18 Un solo compuesto puede coordinarse en diferentes posiciones al átomo central. Las moléculas de esta clase o grupo se denominan ligantes multidentados o quelatos. –Ejemplo: El anión del ácido etilendiamintetracetico (EDTA) que puede cordinarse hasta en 6 posiciones.

19 EDTA Número atómico efectivo Co número atómico = 27 Co (III) = 24 electrones

20 G.N. Lewis (1916): –Un enlace químico entre dos átomos A y B puede producirse si comparten un par de electrones. –Generalmente cada átomo contribuye con un electrón. –Este tipo de enlace por un par de electrones se llama enlace covalente.

21 A. + B. = A:B Cuando uno aporta un par de electrones se denomina reacciones ácido-base de Lewis.

22 Ácido es una sustancia capaz de aceptar un par de electrones. Base es una sustancia capaz de donar un par de electrones. Todos los ligantes son bases de Lewis y los metales, ácidos de Lewis. A + B: A:B (ácido) (base) (compuesto de coordinación)

23 Es el número de electrones que rodea al metal coordinado. Se representa como NAE. Generalmente, los valores del NAE resultan iguales a los números atómicos de los gases nobles. –Sin embargo, hay muchas excepciones a esta regla. –Los que siempre cumplen con esta regla son los carbonilos metálicos y sus derivados.

24 El NAE del Co(III) en el [Co(NH 3 ) 6 ] 3+ se calcula fácilmente como sigue : Co número atómico = 27 Co (III) = 24 electrones 6 (:NH 3 ) = 12 electrones Total = 36 electrones (número atómico efectivo)

25 Desarrollada por Linus Pauling del Instituto Tecnológico de California, difundio su obra en la articulo The Nature of the Chemical Bond (1940). Explica satisfactoriamente la estructura y las propiedades magnéticas de los compuestos de coordinación. Supone un enlace covalente. *Actualmente se utilizan más las teorías del campo cristalino, del campo ligante y de orbítales moleculares.

26 Explicación de la formación del [CoF 6 ] 3+ Co 1s 2 2s 2 2p 6 3s 2 3p 6 4s2 3d 7 Co(III) 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 4 –hibridación sp 3 d 2 –paramagnético F F F XXXXXX 3d s 2 p 3 d 2 3d restantes

27 Supone una interacción iónica entre el ligante y el metal. Las energías del enlace coordinado se pueden calcular de acuerdo a: *Los resultados obtenidos son buenos para complejos de metales que no son de transición. *Para los complejos de metales de transición los valores son demasiado bajos. (carga 1 )(carga 2 ) 4 0 r Energía =

28 Bethe y van Vleck en 1930 corrigieron la teoría electrostática y establecieron la teoría del campo cristalino ( TCC ), pero no fue hasta 1951 que se empezó a aplicar. Para corregir los resultados consideran el efecto de los ligantes sobre las energías de los orbitales d ( split ).

29 Para comprender la TCC es preciso tener una imagen clara de la orientación espacial de los orbitales d. Orbitales t 2g : orbitales d xy, d xz, d yz Orbitales e g : orbitales d x 2 - z 2

30 La interacción de los orbitales d de un metal de transición con los ligantes produce un salto de energía en que unos bajan y otros suben. Los cinco orbitales del ion metálico libre se separan en dos grupos de orbitales d que tienen diferente energía, 3 orbitales (entre los ejes) y 2 orbitales ( d x 2 - y 2, d z 2 ), donde cada grupo tiene la misma energía ( orbitales degenerados ).

31 La diferencia de energía entre los dos grupos se denomina como 10Dq = 0 Principales factores que afectan la magnitud del 10Dq: –La carga del ion metálico: a mayor carga mayor 10Dq –Naturaleza del metal: segunda y tercera serie de transición son de bajo spin y las de la primera serie de transición presenta alto y bajo spin. –El número de ligantes: tetraédrico = 4, octaédrico = 6 –La naturaleza del ligante influye: serie espectroquímica.

32 En la siguiente figura se pueden ver los orbitales d en su estado basal. Luego suben, cuando interaccionan con los ligantes, si los ligantes rodean a la misma distancia y orientación al metal. En una simetría tetraédrica el esquema de niveles de energía es exactamente el inverso del caso de una simetría octaedrica.

33 Energía de los orbitales d en un ion metálio libre: (Ti 4 ) 6 Dq = Dq = Dq=0.4 4 Dq=0.4 EnergíaEnergíaEnergíaEnergía Energía de los orbitales d en un complejo hipotétio en el cual no hay desdoblamiento de niveles por el campo cristalino. Energía de los orbitales d en un complejo octaédrico: [( TiF 6 ) -2 ] } } 10 Dq = 0 t 2g egegegeg

34 El aumento de energía de los orbitales d se compensa por la unión entre el ión metálico y los ligantes. En la figura se pueden observar las diferencias en la separación de los orbitales de acuerdo a la geometría del compuesto.

35 Esponja esférica (ion metálio libre) Esponja esférica sometida a la presión de una capa esférica (complejo metálico hipotético) Esponja deformada por la acción de presiones localizadas (complejo metálio) Los efectos del campo cristalino se pueden visualizar mediante una esponja esférica sometida a presiones de simetría esférica y a presiones localizadas.

36 En una distribución octaédrica de grupos ligantes los conjuntos de orbitales t 2g y e g poseen energías diferentes. En un sistema otaédrico la energía de los orbitales t 2g es unidades menor que la de los hipotéticos cinco orbitales d degenerados que resultan al no tomar en cuenta la separación producida por el campo cristalino. Por lo tanto, los orbitales e g están 0.6 unidades de energía por encima de la energía de los hipotéticos orbitales degenerados.

37 Por ejemplo, en un complejo octaédrico que contiene un electrón d, el electrón ocupará el orbitla d de menor energía (0.4 0 ), siendo así más estable de lo que predice el modelo eslectrostático simple. El valor se denomina energía de estabilización del campo cristalino (EECC) del complejo.

38 Los valores de EEC se asignan fácilmente asignando el valor de a cada electrón situado en el nivel t 2g y un valor de a cada electrón situado en un nivel e g. La energía de estabilización de campo cristalino (EECC) para un sistema d 5 puede ser: a)3 (0.4 ) + 2( ) = 0 b)6 (0.4 ) + 0( ) = 2.0

39 Energías de estabilización del campo cristalino para iones metálicos en complejos octaédricos.

40 La separación de los orbitales d de un ion central, producida por el campo cristalino en complejos de diversas geometrías se asemeja a lo que sucede para la geometría octaédrica como se ve en la siguiente figura:

41 Un complejo tetraédrico con centro en el centro de un cubo.

42 Con la teoría del campo cristalino se pueden explicar fácilmente las propiedades magnéticas de los complejos de los metales de transición. Las sustancias con electrones no apareados son atraídas por un imán y se denominan paramagnéticas. Mientras que, los complejos que no son atraídos por un imán son diamagnéticos.

43 Los complejos de spin bajo son aquellos en los que algunos de los electrones no apareados del ion metálico gaseoso han sido forzados a aparearse. Los complejos de spin alto son aquellos que son paramagnéticos y contienen electrones no apareados.

44 Ejemplos: Co(NH 3 ) 6 3+ spin bajo = spin apareado = complejo orbital interno no magnético CoF 6 3- spin alto= desapareados= complejo orbital externo magnético

45 Sin embargo, para explicar la serie electroquímica se necesita considerar interacciones iónicas y también covalentes. La teoría corregida se conoce como teoría del campo ligante. Los ligantes que producen campos más intensos son aquellos capaces de formar enlaces con el atómo central metálico.

46 Campo débil Los electrones obedecen la regla de Hund * y se mantienen desapareados. Campo fuerte El salto es muy grande, los electrones se aparean ya que es menor la energía de apareamiento que la energía entre niveles ( 10Dq ). * Establece que los electrones de los orbitales correspondientes a un mismo subnivel tienden a poseer igual spin.

47 Ligantes de campo fuerte, Ligantes de campo intermedio Ligantes de campo debil CO, CN - > fen > NO 2 - > en > NH 3 > NCS - > H 2 O > F - > RCO 2 - > OH- > Cl - > Br - > I -

48 El mayor éxito de la TCC fue la interpretación de los colores de los compuestos de los metales de transición. Según el color de la sustancia se pueden determinar las diferencias de energía que existen entre los orbitales d en los complejos de metales de transición. En un especto de absorción, según donde una sustancia absorba luz visible será su color. Si su longitud de onda se encuentra entre: 3,300 – 5,000 A = Azul 5,000 – 6,700 A = Amarillo 6,700 – 10,000 A = Rojo


Descargar ppt "Antiguamente conocidos como complejos. Contienen un átomo o ión central que es un metal rodeado por un grupo de iones o moléculas Tiende a mantener su."

Presentaciones similares


Anuncios Google