La descarga está en progreso. Por favor, espere

La descarga está en progreso. Por favor, espere

Centro de Investigación Estadística y Mercadeo www.leondariobello.com.

Presentaciones similares


Presentación del tema: "Centro de Investigación Estadística y Mercadeo www.leondariobello.com."— Transcripción de la presentación:

1 Centro de Investigación Estadística y Mercadeo

2 Metodología ARIMA CIEM

3 MODELOS AUTORREGRESIVOS Y DE PROMEDIOS MOVILES Box y Jenkins Conceptos básicos Proceso estocástico: llamamos proceso estocástico a una sucesión de variables aleatorias {Yt} donde t= , 0, 1, 2, Estacionariedad:Puede ser estacionario en medias y/o en varianzas (no cambios) Ruido Blando (White noice): se llama ruido blanco a una sucesión de variables aleatorias con esperanza cero, igual varianza e independientes en el tiempo Paseo aleatorio : llamamos paseo aleatorio a un proceso estocástico {Yt} cuyas primeras diferencias forman un proceso ruido blanco Preparado por: León Dario Bello

4 MODELOS AUTORREGRESIVOS Y DE PROMEDIOS MOVILES Estacionariedad en medias hace referencia a que no tenga tendencia, estacionariedad en varianzas a que se tenga varianzas iguales, supuestos que se validaron anteriormente funciones de Autocorrelación y Autocorrelación Parcial son claves para éste análisis. Preparado por: León Dario Bello

5 MODELOS AUTORREGRESIVOS Y DE PROMEDIOS MOVILES Se utilizan cuando en algunos puntos de la serie estos están relacionados con otros que le anteceden y que les siguen. Son aquellos que reúnen en una sola expresión las componentes autoregresiva y de media móvil de la serie de tiempo, si la tienen. La componente Autoregresiva se encarga de determinar cada observación como una combinación lineal de las observaciones anteriores; la componente de Media Móvil incluye una parte aleatoria Preparado por: León Dario Bello

6 Los modelos deben ser construidos sobre una serie X t estacionaria con respecto a la media, varianza y autocorrelaciones. Si la serie X t no es estacionaria con respecto a la media, para volverla estacionaria hay que aplicar una diferenciación de orden d: d X t ; si no lo es con respecto a las autocorrelaciones deben emplearse una diferenciación de orden D; si no lo es con respecto a la varianza debe utilizarse la transformación de Box-Cox. DESCRIPCIÓN DE LOS MODELOS Preparado por: León Dario Bello

7 Metodología ARIMA Estacionariedad en medias hace referencia a que no tenga tendencia, estacionariedad en varianzas a que se tenga varianzas iguales, supuestos que se validaron anteriormente. Preparado por: León Dario Bello El modelo corrido con el SPSS fue el ARIMA (1,1,0)(1,1,0) 12

8 Metodología ARIMA Estacionariedad en medias hace referencia a que no tenga tendencia, estacionariedad en varianzas a que se tenga varianzas iguales, supuestos que se validaron anteriormente. Preparado por: León Dario Bello El modelo corrido con el SPSS fue el ARIMA (1,1,0)(1,1,0) 12


Descargar ppt "Centro de Investigación Estadística y Mercadeo www.leondariobello.com."

Presentaciones similares


Anuncios Google