La descarga está en progreso. Por favor, espere

La descarga está en progreso. Por favor, espere

Leandro Gómez Fernando Casalongue Gastón Lasalt Tutores: Sergio Nesmachnow Franco Robledo FACULTAD DE INGENIERÍA UNIVERSIDAD DE LA REPÚBLICA | URUGUAY.

Presentaciones similares


Presentación del tema: "Leandro Gómez Fernando Casalongue Gastón Lasalt Tutores: Sergio Nesmachnow Franco Robledo FACULTAD DE INGENIERÍA UNIVERSIDAD DE LA REPÚBLICA | URUGUAY."— Transcripción de la presentación:

1 Leandro Gómez Fernando Casalongue Gastón Lasalt Tutores: Sergio Nesmachnow Franco Robledo FACULTAD DE INGENIERÍA UNIVERSIDAD DE LA REPÚBLICA | URUGUAY

2 Introducción Presentación del problema Definición del espacio de soluciones Metaheurísticas Metaheurísticas aplicadas al problema Evaluación experimental Conclusiones

3 AntelData planea ampliar la red MPLS al interior del país. Como parte del convenio marco Antel – Fing, surge un proyecto para optimizar el diseño de dicha red. El enfoque del grupo está dirigido a explorar distintas metaheurísticas para resolver el problema. Los objetivos son: Minimizar el costo de funcionamiento de la red MPLS a implementar, optimizando el uso de la inf. de transporte Lograr un diseño robusto de la red, de manera que sea tolerante a fallas simples de transporte.

4 En el problema existe una interacción entre dos redes bien identificadas: Red de Datos (a diseñar) Red de Transporte (fija) La red de datos es una red lógica construida sobre la red de transporte. Un enlace virtual o enlace lógico de la red de datos se corresponde con un camino en la red de transporte A este tipo de redes se les denomina redes overlay.

5 Cada enlace de datos tiene un camino fijo en transporte Cada par de terminales con demanda tiene un ruteo fijo en datos, que solo cambia en caso de falla de un enlace

6 Dados: grafo de transporte. grafo de elementos candidatos de la red de datos. matriz de demandas entre terminales. capacidades discretas enlaces de datos y se interpreta como no usar el enlace. km de un camino en transporte. costo por km para un ancho de banda.

7 Determinar: dimensión del enlace mapeo a transporte del enlace ruteo entre los terminales para la falla Para que: Costo enlace e ij

8 El espacio de soluciones se define por el modelo de ruteo. Se definen dos posibles modelos de ruteo: Rutear con camino primario – alternativo Rutear con n-caminos El modelo de primario alternativo propone reservar dos caminos disjuntos para cada par de nodos con demanda El modelo de n-caminos es más flexible, permite una ruta independiente para cada falla de la red de transporte.

9 Comparación a priori: Diferentes costos de implementación. Cantidad de soluciones factibles representables. Comparación en soluciones obtenidas : Medir el sesgo de las soluciones entre el modelo de 2 caminos y N caminos. ¿Cómo? Comparando los óptimos obtenidos en ambos modelos para un conjunto de problemas pequeños y heterogeneo. Para lograrlo es necesario usar algoritmos exactos. Se diseñan e implementan algoritmos de backtracking.

10 Los costos obtenidos por el modelo de N caminos son iguales o mejores que los obtenidos con 2 caminos ( gap promedio de 9,39%). El tiempo de cómputo para N caminos resultó mucho mayor que 2 caminos. Existen diversos factores a la hora de elegir un modelo de ruteo. Costos implementación Sesgo Enfoques tratados Finalmente se opto por utilizar el modelo de 2 caminos.

11 Motivación Problemas NP Difíciles Métodos exactos inaplicables Los métodos aproximados buscan obtener resultados de buena calidad en un tiempo menor que el de los algoritmos exactos. Podemos clasificar los métodos aproximados en: Heurísticas Metaheurísticas

12 Tabu Search: Algoritmo basado en trayectoria. Mantiene un historial con los individuos o lugares recientemente visitados, el cual se usa como lista tabú. Algoritmos genéticos: Se inspiran en la teoría de la evolución natural para su funcionamiento. Algoritmo basado en población. Trabaja básicamente en iteraciones, donde cada una comprende tres fases: Selección Reproducción (y mutación) Reemplazo

13 Motivación Los algoritmos genéticos se presentan como una metaheurística potente que ha obtenido buenos resultados en diversos problemas. Resulta interesante el estudio de la aplicabilidad de un AG al problema tratado Como una iniciativa distinta en el marco del proyecto. Experiencia previa de los integrantes del grupo. Instanciación Fitness Selección Representación Cruzamiento Mutacion

14 Fitness: inverso del costo Selección: rueda de ruleta Representación: Codificaciones tradicionales no son aptas para este problema Se define una codificación basada en el ruteo de la solución: Cromosoma Sub-cromosoma de ruteoSub-cromosoma de mapeo

15 Componente de ruteo: Define los caminos entre los pares de nodo con demanda. Se compone de una lista de elementos que denominamos genes de ruteo. La capacidad de los enlaces es implícita

16 Componente de mapeo: Define el mapeo a transporte de cada una de las aristas usadas en la solución Mantiene una lista de elementos que llamaremos gen de mapeo

17 Se diseñó un algoritmo del estilo greedy aleatorio capaz de crear y reparar soluciones. Los genes de ruteo se construyen de forma iterativa e independiente. Esta construcción se hace agregando nuevos enlaces de datos de manera iterativa. Se le da más probabilidad a los enlaces de datos que aportan menos costo a la solución.

18 Cuando se construye un gen de ruteo, se construyen todos los genes de mapeo que necesita. No es greedy aleatorio en el sentido estricto. La generación de un gen puede fallar. En ese caso el algoritmo elimina algún gen ya construido.

19 Debido a la codificación del problema no es posible utilizar el cruzamiento tradicional Capacidad de generar un hijo a partir de N padres. Se decidió utilizar N=2. El hijo se genera de a un gen por vez Pueden aparecer problemas al momento de agregar un gen al nuevo individuo El cromosoma del nuevo individuo puede quedar incompleto. En ese caso se repara con el algoritmo greedy aleatorio

20

21 Mutación en datos: Mutación aleatoria que reconstruye un gen al azar del cromosoma de ruteo. Para reconstruir el gen se utiliza el algoritmo de construcción de soluciones factibles. Mutación en transporte: Mutación aleatoria que modifica parte del mapeo de varios enlaces. Mutación enlace tabú: Mutación aleatoria que elimina un enlace al azar para reconstruir luego toda la solución.

22 Mejor mutación en datos: Utiliza la Mutación Datos para definir su espacio de búsqueda. Se realiza cierta cantidad de veces la Mutación Datos y quedándose con la mejor solución encontrada. Mejor mutación en transporte: Ídem que el anterior, pero usando la mutación transporte

23 Características atrayentes del Tabu Search Basada en trayectoria De construcción relativamente sencilla Técnica bastante nueva, pero con muy buenos resultados obtenidos por los trabajos previos El diseño reutiliza en gran parte lo construido para el AG. Se utiliza el mismo mecanismo de inicialización La búsqueda local es la mejor mutación datos

24 La idea es combinar las fortalezas del AG y el Tabu Search El Tabu Search trabaja como un operador evolutivo del AG. Se genera una perdida de performance. Existe la posibilidad de regular esta perdida con la probabilidad de ejecución del Tabu Search.

25 Se utilizó la biblioteca MALLBA para implementar el AG. Es una serie de esqueletos en C++ Incorpora el modelo de islas para el paralelismo de algoritmos genéticos Islas evolucionan independientemente Existe una migración controlada entre las distintas poblaciones El Tabu Search se implementó C++, reutilizando mayormente el código del AG

26 Objetivo La correcta calibración de sus variables Instancias de prueba Conjunto heterogéneo de instancias pequeñas Calibración AG hibrido en dos etapas Tamaño de población Probabilidad de los operadores evolutivos Versión paralela Mismos parámetros que los obtenidos en calibración serial, salvo tamaño de población 4 islas de 13 individuos

27 Se realizó sobre los escenarios presentados por C. Risso en el cluster de facultad. En una primera instancia se evaluaron solo los escenarios napL (el tráfico internacional se rutea hacia AMM).

28 AG vs AGP: Speedup sublineal Mejores resultados del AGP en general AGP vs AGP hibrido: El AGP hibrido demora un 30% mas en promedio El AGP hibrido obtuvo mejores valores en 2 de 3 casos El AGP hibrido evoluciona sensiblemente mas rápido en las primeras 1000 iteraciones (aunque no se observan mejoras substantivas en los resultados finales)

29 Se utilizó Tabu Search para resolver también los escenarios napH. Tabu Search vs C. Risso: Gap menor al 9% en escenarios napL (escenario 2 pequeña ventaja) Gap entre 10% y 35% para escenarios napH (escenario 3, gap de 45%)

30 Red optima local escenario 02 Líneas blancas: enlaces de transporte Líneas rojas: enlaces 10 GB Líneas azules: enlaces 1 GB

31 Conclusiones AG no logra buenos resultados (cruzamiento) Versión paralela obtiene mejores resultados AG Hibrido no obtiene ventajas sustantivas El modelo de ruteo probablemente afecta la calidad de las soluciones Resultados de los escenarios napL mejores a los de napH Tabu search eficaz y eficiente para napL

32 Trabajo a futuro Cambiar el modelo de ruteo Cambiar la representación de la solución Paralelismo de grano mas fino para el AG Probar otras metaheurísticas

33


Descargar ppt "Leandro Gómez Fernando Casalongue Gastón Lasalt Tutores: Sergio Nesmachnow Franco Robledo FACULTAD DE INGENIERÍA UNIVERSIDAD DE LA REPÚBLICA | URUGUAY."

Presentaciones similares


Anuncios Google