La descarga está en progreso. Por favor, espere

La descarga está en progreso. Por favor, espere

Radiobiología Celular 4.2 Modelos (Ejercicios)

Presentaciones similares


Presentación del tema: "Radiobiología Celular 4.2 Modelos (Ejercicios)"— Transcripción de la presentación:

1 Radiobiología Celular 4.2 Modelos (Ejercicios)
Dr. Willy H. Gerber Instituto de Fisica Universidad Austral Valdivia, Chile Objetivos: Comprender la forma como se modela el daño a las células. – UFRO-Master-Fisica-Medica-4-2-Modelos-11.08

2 Probabilidades Definición de probabilidades Probabilidad
Casos favorables Casos totales Ejemplos: probabilidad p de tirar un 6 probabilidad W de tirar con dos dados que la suma sea 4 – UFRO-Master-Fisica-Medica-4-2-Modelos-11.08

3 Probabilidades 4 casos – UFRO-Master-Fisica-Medica-4-2-Modelos-11.08

4 TCP Probabilidad de no tener células cancerígenas o tumour control probability (TCP): Si se considera la repoblación el TCP seria: – UFRO-Master-Fisica-Medica-4-2-Modelos-11.08

5 Probabilidades Distribución binomial Para el caso
Distribución de Poissone – UFRO-Master-Fisica-Medica-4-2-Modelos-11.08

6 TCP Probabilidad de no tener células cancerígenas o tumour control probability (TCP): – UFRO-Master-Fisica-Medica-4-2-Modelos-11.08

7 Modelos de probabilidad
Modelo de Poissone o modelo lineal Ansatz para la probabilidad de sobrevivencia de una célula tras ser irradiada con una dosis D: – UFRO-Master-Fisica-Medica-4-2-Modelos-11.08

8 Modelo LQ Modelo “Linear-Quadratic”
Ansatz para la probabilidad de sobrevivencia de una célula tras ser irradiada con una dosis D: Biologically Effective Dose (BED) No reparables Sin efecto por fraccionamiento En parte reparables Efecto por fraccionamiento – UFRO-Master-Fisica-Medica-4-2-Modelos-11.08

9 Modelo LQ Modelo “Linear-Quadratic” Dosis Linear
Probabilidad de sobrevivencia Cuadrático – UFRO-Master-Fisica-Medica-4-2-Modelos-11.08

10 Múltiple dosis Fraccionamiento En el modelo lineal:
Modelo cuadrático - lineal Si son n dosis iguales: – UFRO-Master-Fisica-Medica-4-2-Modelos-11.08

11 Generalización Modelo de reparación parcial Si son n dosis iguales:
– UFRO-Master-Fisica-Medica-4-2-Modelos-11.08

12 Modelo Zaider-Minerbo
Empleando el modelo definido: Ecuación para A: Condición inicial: – UFRO-Master-Fisica-Medica-4-2-Modelos-11.08

13 Modelo Zaider-Minerbo
Función TCP del modelo – UFRO-Master-Fisica-Medica-4-2-Modelos-11.08

14 Modelo Zaider-Minerbo
El numero medio de células cancerígenas – UFRO-Master-Fisica-Medica-4-2-Modelos-11.08

15 Modelo Dawson Hillen Se asumen solo dos u (activas) y q (inactivas – G0) Células que pasan a estar inactivas Células duplicadas que pasan a estar inactivas Células que se vuelven a ser activas Probabilidad de muerte de las células Modelo simple – UFRO-Master-Fisica-Medica-4-2-Modelos-11.08

16 Modelo Dawson Hillen Modelo para los términos radiativos
Fracción de dosis Probabilidad de muerte por impacto único Probabilidad de muerte por impacto doble Ecuaciones – UFRO-Master-Fisica-Medica-4-2-Modelos-11.08

17 Modelo Dawson Hillen Reemplazando:
– UFRO-Master-Fisica-Medica-4-2-Modelos-11.08

18 Modelo Dawson Hillen De Probabilidad de sobrevivencia:
Por lo que en el modelo Dawson-Hillen – UFRO-Master-Fisica-Medica-4-2-Modelos-11.08

19 Ejercicios Cual es la probabilidad que tiene un fotón/electrón de “pasar” por el nucléolo en que se encuentra el ADN si la célula tiene un diámetro de 10 µm y el nucléolo un radio de 1.26 µm? Suponga que la partícula se mueve en línea recta y que tanto la célula como el nucléolo se modelan como esferas. ( ) Si un electrón tiene una energía de 4 MeV, la energía que pierde en cada colisión es del orden de 4 eV y el camino total que recorre es de unos 10 mm, cual es el camino medio que recorre entre dos colisiones? (1.00x10-8 m) Cual es el camino medio que recorre una partícula al atravesar un nucléolo según los datos del ejercicio 1 y cuantas colisiones sufre según los datos del ejercicio 2? (4R/3, R radio, 1.68 µm, 168 colisiones) Si cada par de bases en una cadena ADN tiene un largo de 2.4 nm, ancho 0.33 nm y alto 0.33 nm y existen 2.20x10+08 de estas. Que fracción del volumen del nucléolo ocupan? ( ) Que probabilidad existe que de las colisiones promedio experimentadas por un electrón en un nucléolo, este incluya una base de una cadena ADN? (1.15) En una muestra se mide la sobrevivencia de un cultivo de células frente a distintas dosis, obteniéndose: (0 Gy,1), (5 Gy,0.8), (10 Gy,0.45), (15 Gy,018), (20 Gy,0.05), (25 Gy,0.015),(30 Gy,0.004). A que α y β corresponden estos valores? Realice una ajuste por mínimos cuadrados para estimar los coeficientes. ( /Gy, /Gy^2) – UFRO-Master-Fisica-Medica-4-2-Modelos-11.08

20 Ejercicios Considerando los α y β recién calculados, cual tendría que ser la dosis por sesión sin se desea en 10 sesiones obtener la misma probabilidad de sobrevivencia para lo que seria una sola sesión con una dosis de 70 Gy? (19.32 Gy) Si se asume que normalmente se aplican 70 Gy de dosis para combatir en forma efectiva un cáncer, cuantos impactos recibe una célula si se asume el tamaño del ejercicio 1, las energías del ejercicio 2 y una densidad de la célula igual al agua. (5.73x10+07) Si consideramos la probabilidad de impacto en el nucléolo y las veces que impacta la cadena ADN según el ejercicio 5 cuantos impactos de los calculados en 8 recibe el ADN? (4.19x10+06) Si este nivel de impactos corresponde a la probabilidad de sobrevivencia calculada con el modelo del ejercicio 6, cual es la probabilidad de muerte de una célula por un impacto en la cadena ADN? (6.32x10-6) Usando los α y β calculados en 6 y asumiendo una dosis de 70 Gy, cada cuantas células irradiadas sobreviviría una? (3.239x10+11) Suponiendo las dimensiones de la célula del ejercicio 1 y suponiendo una densidad igual a la del agua, a que masa de tejido equivale el numero de células del ejercicio 11? ( kg) – UFRO-Master-Fisica-Medica-4-2-Modelos-11.08


Descargar ppt "Radiobiología Celular 4.2 Modelos (Ejercicios)"

Presentaciones similares


Anuncios Google