La descarga está en progreso. Por favor, espere

La descarga está en progreso. Por favor, espere

Dr. Edwin Alfonso Sosa 1 Razonamiento Cuantitativo GEMA 1000 Sección 23914 23910 Dr. Edwin Alfonso Horas de Oficina: Martes 3:30-4:30 PM

Presentaciones similares


Presentación del tema: "Dr. Edwin Alfonso Sosa 1 Razonamiento Cuantitativo GEMA 1000 Sección 23914 23910 Dr. Edwin Alfonso Horas de Oficina: Martes 3:30-4:30 PM"— Transcripción de la presentación:

1 Dr. Edwin Alfonso Sosa 1 Razonamiento Cuantitativo GEMA 1000 Sección Dr. Edwin Alfonso Horas de Oficina: Martes 3:30-4:30 PM

2 Dr. Edwin Alfonso Sosa 2 Capacitantes Capaz de definir los postulados de la geometría euclidiana Diferenciar entre lo que es una recta, línea, semirrecta y segmento de línea. Reconocer los diferentes tipos de ángulos y rectángulos. Capaz de encontrar la medida de un ángulos usando los postulados para rectas paralelas cruzadas por una transversal. Capaz de encontrar la medida de los ángulos interiores y exteriores de un triangulo usando los postulados para triángulos. Identificar lo que es un radio, secante, tangente, semicírculo.

3 Dr. Edwin Alfonso Sosa 3 Geometría Euclidiana El compendio de Geometría mas antiguo es Los Elementos obra escrita por Euclides alrededor del año 300 a.C. La obra inicia con definiciones de conceptos básicos, como el punto, la línea y el plano; luego, expone cinco postulados y proporciona el fundamento de todo lo que sigue.

4 Dr. Edwin Alfonso Sosa 4 Los cinco postulados de Euclides Dos puntos determinan una y solo una línea recta. La línea recta es aquella que se extiende de manera indefinida en cualquier dirección Un circulo puede trazarse con cualquier centro y cualquier radio dados. Todos los ángulos rectos son iguales. Dados una recta k y un punto P fuera de la línea, existe una y solo una línea, m, que pasa por P y que es paralela a k.

5 Dr. Edwin Alfonso Sosa 5 Punto, Línea, Plano Euclides lo definió como: Punto: lo que no se divide en partes. Línea: lo que tiene longitud pero carece de ancho Plano: Una superficie uniformemente distribuida con rectas que se cruzan sobre ella.

6 Dr. Edwin Alfonso Sosa 6 Líneas, semirrectas, rectas y segmentos NombreFiguraSímbolo Línea AB o línea BA Semirrecta AB Semirrecta BA Recta AB Recta BA Segmento AB o segmento BA AB AB BA AB BA AB

7 Dr. Edwin Alfonso Sosa 7 ángulo Unión de dos rectas que tienen un punto extremo en común, como se aprecia en la figura 5. Las rectas que forman un ángulo se llaman lados del ángulo. El punto en común de las rectas es el vértice. B A C LADO Vértice

8 Dr. Edwin Alfonso Sosa 8 Los ángulos se miden por la cantidad de rotación Los astrónomos babilonios eligieron el numero 360 para representar la cantidad de rotación de una recta sobre si misma. 1 grado (1° 1 / 360) B A C LADO

9 Dr. Edwin Alfonso Sosa 9 Ángulos agudos

10 Dr. Edwin Alfonso Sosa 10 Ángulos rectos

11 Dr. Edwin Alfonso Sosa 11 Ángulos obtusos

12 Dr. Edwin Alfonso Sosa 12 Ángulos opuestos por el vértice tienen medidas iguales (6x-5) ° (4x+19) °

13 Dr. Edwin Alfonso Sosa 13 Ángulos alternos internos son iguales Líneas Paralelas Línea Transversal

14 Dr. Edwin Alfonso Sosa 14 Ángulos alternos externos son iguales

15 Dr. Edwin Alfonso Sosa 15 Ángulos correspondientes son iguales

16 Dr. Edwin Alfonso Sosa 16 Ángulos interiores en el mismo lado de la transversal suman 180°

17 Dr. Edwin Alfonso Sosa 17 Ejercicio 66 Demostración de que los ángulos alternos externos tienen la misma medida: a) La medida del ángulo 2 = medida del ángulo ______, ya que son ángulos opuestos por el vértice. b) La medida del ángulo 3 = medida del ángulo _______, ya que son ángulos alternos internos. c) La medida del ángulo 6 = medida del ángulo ______, ya que son ángulos opuestos por el vértice. d) Por los resultados de las partes (a), (b), y (c), la medida del ángulo 2 debe ser igual a la medida del ángulo ______, con lo que se demuestra que los ángulos alternos ________ tienen la misma medida externos

18 Dr. Edwin Alfonso Sosa 18 Tarea Pág , 68, 69, 70, 77

19 Dr. Edwin Alfonso Sosa 19 Curvas, polígonos y círculos Curva simple: No pasa dos veces por el mismo punto Curva cerrada: Tiene sus puntos inicial y final localizados en el mismo lugar (puntos extremos coinciden. Simple; no cerrada Simple cerrada

20 Dr. Edwin Alfonso Sosa 20 Figura convexa AB A B Convexa No convexa Segmento de línea AB tiene que estar completamente dentro de la figura.

21 Dr. Edwin Alfonso Sosa 21 Polígonos Los tipos de curvas mas comunes en las matemáticas están las que son simples y cerradas, y quizás las mas importantes de estas sean los polígonos. Un polígono es una curva cerrada y simple constituida solamente por segmentos de línea recta. Los segmentos se llaman lados, y los puntos donde se encuentran los extremos se conocen como vértices.

22 Dr. Edwin Alfonso Sosa 22 Clasificación de polígonos de acuerdo al numero de lados. Numero de LadosNombre Triangulo Cuadrilátero Pentágono Hexágono Heptágono Octágono Nonágono Decágono

23 Dr. Edwin Alfonso Sosa 23 Polígonos regulares Tienen lados iguales y ángulos iguales.

24 Dr. Edwin Alfonso Sosa 24 Triángulos Ángulos Lados Todos Agudos Un ángulo recto Un ángulo obtuso Triangulo acutánguloTriangulo rectánguloTriangulo obtusángulo Todos lados iguales Dos lados iguales No tiene lados iguales Triangulo equiláteroTriangulo isósceles Triangulo escaleno

25 Dr. Edwin Alfonso Sosa 25 Cuadriláteros El trapecio es un cuadrilátero con un par de lados paralelos El paralelogramo es un cuadrilátero con dos pares de lados paralelos El rectángulo es un paralelogramo con un ángulo recto (y por consiguiente cuatro ángulos rectos) El cuadrado es un rectángulo con todos sus lados de la misma longitud. El rombo es un paralelogramo con todos sus lados de la misma longitud.

26 Dr. Edwin Alfonso Sosa 26 Suma de ángulos de un triangulo La suma de las medidas de los ángulos interiores de un triangulo es de 180 °. x°x° (X+20)° (210-3x)°

27 Dr. Edwin Alfonso Sosa 27 Medida de ángulo exterior La medida del ángulo exterior de un triangulo es igual a la suma de las medidas de los dos ángulos interiores opuestos

28 Dr. Edwin Alfonso Sosa 28 Ejemplo x°x° (X+20)° (3x-40)° A B CD La suma de los ángulos interiores A y B debe ser igual a la medida del ángulo BCD.

29 Dr. Edwin Alfonso Sosa 29 Círculos Se llama círculo a un conjunto de puntos en un plano, cada uno de los cuales esta a la misma distancia con respecto a un punto fijo (O, centro). Radio del circulo Tangente del circulo Secante del circulo cuerda P QO R T semicírculo

30 Dr. Edwin Alfonso Sosa 30 Ángulo inscrito en un semicírculo Para estar inscrito en un semicírculo, el vértice del ángulo tiene que estar en el circulo con los lados del ángulo dirigidos a los puntos extremos del diámetro en la base del semicírculo. 90°

31 Dr. Edwin Alfonso Sosa 31 Tarea Pág. 505 Ejercicios: 1,2,3,4,5,6,7,8,9,10,13,17,19,21,23,25,27,29, 31,33,35,37, 43,45,49,51,54


Descargar ppt "Dr. Edwin Alfonso Sosa 1 Razonamiento Cuantitativo GEMA 1000 Sección 23914 23910 Dr. Edwin Alfonso Horas de Oficina: Martes 3:30-4:30 PM"

Presentaciones similares


Anuncios Google