La descarga está en progreso. Por favor, espere

La descarga está en progreso. Por favor, espere

Unidad III: Ecosistemas y Recursos naturales

Presentaciones similares


Presentación del tema: "Unidad III: Ecosistemas y Recursos naturales"— Transcripción de la presentación:

1 Unidad III: Ecosistemas y Recursos naturales
“Ciclos biogeoquímicos 1° parte” C.D.E.E. Sandra Vázquez Coria

2 LOS CICLOS BIOGEOQUÍMICOS
En el ecosistema el flujo de la energía es unidireccional. Sin embargo, muchos elementos químicos y sustancias inorgánicas, circulan por los distintos niveles tróficos y pasan por el biotopo reciclándose una y otra vez a través del sistema. Estos movimientos de las sustancias inorgánicas constituyen lo que se denominan ciclos biogeoquímicos, en estos ciclos los componentes del biotopo (entorno geológico) son la atmósfera, la corteza sólida de la Tierra y los océanos, ríos y lagos. Los componentes biológicos incluyen a los productores, consumidores, descomponedores y transformadores.

3 La producción de materia viva y su funcionamiento requieren el concurso de ciertos elementos (N, C,P, S, O e H). Estos 6 elementos constituyen el 99% del peso de las células vivas, pero la biosfera no puede disponer de ellos de forma ilimitada. Su relativa escasez en el planeta se compensa gracias a los ciclos biogeoquímicos, que posibilitan la migración, la circulación y el reciclado de estos bioelementos desde el medio físico al cuerpo de los organismos y nuevamente al medio. Mediante los ciclos biogeoquímicos se asegura la continuidad de la vida en el Planeta. C N P S O H

4 DEFINICIÓN Se denomina ciclo biogeoquímico al movimiento de cantidades masivas de carbono, nitrógeno, oxígeno, hidrógeno, calcio, sodio, sulfuro, fósforo y otros elementos entre los componentes vivientes y no vivientes del ambiente (atmósfera y sistemas acuáticos) mediante una serie de procesos de producción y descomposición.

5 IMPORTANCIA DE LOS CICLOS BIOGEOQUÍMICOS
Los elementos naturales de los que se compone la vida son limitados y por tanto deben ser reciclados en forma permanente o por el mismo sistema. Existen elementos traza, que son los que se requieren en mínimas cantidades, pero son indispensables para la vida (Hierro, manganeso, cobre, cinc, boro silicio, molibdeno, cloro vanadio y cobalto). Estos elementos son reciclados o reutilizados por los organismos.

6 El nitrógeno es indispensable para la construcción de proteínas, se deposita en la atmósfera y es transformado por bacterias y algas verde azules. Es convertido en amoníaco, nitritos y nitratos solubles que son utilizables por las plantas o alternativamente en nitrógeno gaseoso que es utilizado por bacterias desnitrificantes. Incorporar nitrógeno al sistema requiere energía, mientras su desintegración libera energía.

7 IMPORTANCIA DE LOS CICLOS BIOGEOQUÍMICOS
El ciclo de los elementos nutritivos junto con la energía solar y el ciclo del nitrógeno, constituyen los elementos básicos para la formación y el desarrollo de los diferentes organismos. La concentración de nutrientes en el suelo y el agua es muy pequeña. Este ciclo es importante para entender la fertilidad de los suelos y su adaptabilidad a la agricultura. El ciclo cambia entre los climas templados (suelo) y ecuatoriales (biomasa). Para la renovación de los elementos nutritivos están principalmente las bacterias y hongos.

8 IMPORTANCIA DE LOS CICLOS BIOGEOQUÍMICOS
El azufre enlaza el aire, el agua y la tierra. Su depósito principal son algunas formaciones rocosas y en cantidades menores en forma de gases atmosféricos. Los materiales son incorporados a las proteínas de los organismos autótrofos como sulfatos.

9 IMPORTANCIA DE LOS CICLOS BIOGEOQUÍMICOS
El dióxido de carbono y el oxígeno son especialmente importantes para entender los problemas ambientales. Estos dos elementos forman un equilibrio regulado por el intercambio entre autótrofos y heterótrofos.

10 IMPORTANCIA DE LOS CICLOS BIOGEOQUÍMICOS
El ciclo del agua (ciclo hidrológico) es uno de los más importantes. Por medio de la evaporación llega a la atmósfera, por medio de la precipitación llega a la tierra y al estado líquido. A través del proceso de escorrentía el agua desciende desde los nevados hasta el mar y por la infiltración penetra en la tierra. Igualmente, puede ser captada por los organismos para hacer parte importante del metabolismo y luego ser expulsada por la transpiración.

11 Ciclo del Carbono

12 CICLO DEL CARBONO      Aunque el carbono es un elemento muy raro en el mundo no viviente de la tierra, representa alrededor del 18% de la materia viva. Fuera de la materia orgánica, el carbono se encuentra en forma de bióxido de carbono (CO2) y en las rocas carbonatadas (calizas, coral). Los organismos autótrofos -especialmente las plantas verdes- toman el bióxido de carbono y lo reducen a compuestos orgánicos: carbohidratos, proteínas, lípidos y otros. Los productores terrestres obtienen el bióxido de carbono de la atmósfera y los productores acuáticos lo utilizan disuelto en el agua (en forma de bicarbonato, HCO3-).

13 Las redes alimentarías dependen del carbono, no solamente en lo que se refiere a su estructura sino también a su energía. En cada nivel trófico de una red alimentaria, el carbono regresa a la atmósfera o al agua como resultado de la respiración. Las plantas, los herbívoros y los carnívoros respiran y al hacerlo liberan bióxido de carbono. La mayor parte de la materia orgánica en cada nivel trófico superior sino que pasa hacia el nivel Trófico "final", los organismos de descomposición.

14 Esto sucede a medida que mueren las plantas y los animales o sus partes (por ejemplo, las hojas). Las bacterias y los hongos desempeñan el papel vital de liberar el carbono de los cadáveres o de los fragmentos que ya no podrán utilizarse como alimento para otros niveles tróficos. Mediante el metabolismo de los animales y de las plantas se libera el bióxido de carbono y el ciclo del carbono puede volver a comenzar.

15 El Ciclo del carbono es básico en la formación de las moléculas de carbohidratos, lípidos, proteínas y ácidos nucleicos; pues todas las moléculas orgánicas están formadas por cadenas de carbonos enlazados entre sí.

16 CICLO DEL CARBONO Ciclo biológico Ciclo Biogeoquímico

17 Ciclo del Carbono

18 ACTIVIDAD

19 Ciclo del Nitrógeno

20 Los organismos emplean el nitrógeno en la síntesis de proteínas, ácidos nucleicos (ADN y ARN) y otras moléculas fundamentales del metabolismo.  Su reserva fundamental es la atmósfera, en donde se encuentra en forma de N2, pero esta molécula no puede ser utilizada directamente por la mayoría de los seres vivos (exceptuando algunas bacterias). Esas bacterias y algas cianofíceas que pueden usar el N2 del aire juegan un papel muy importante en el ciclo de este elemento al hacer la fijación del nitrógeno. De esta forma convierten el N2 en otras formas químicas (nitratos y amonio) asimilables por las plantas. El amonio (NH4+) y el nitrato (NO3-) lo pueden tomar las plantas por las raíces y usarlo en su metabolismo. Usan esos átomos de N para la síntesis de las proteínas y ácidos nucleicos. Los animales obtienen su nitrógeno al comer a las plantas o a otros animales.

21

22 En el metabolismo de los compuestos nitrogenados en los animales acaba formándose ión amonio que es muy tóxico y debe ser eliminado. Esta eliminación se hace en forma de amoniaco (algunos peces y organismos acuáticos), o en forma de urea (el hombre y otros mamíferos) o en forma de ácido úrico (aves y otros animales de zonas secas). Estos compuestos van a la tierra o al agua de donde pueden tomarlos de nuevo las plantas o ser usados por algunas bacterias. Algunas bacterias convierten amoniaco en nitrito y otras transforman este en nitrato. Una de estas bacterias (Rhizobium) se aloja en nódulos de las raíces de las leguminosas (alfalfa, alubia, etc.) y por eso esta clase de plantas son tan interesantes para hacer un abonado natural de los suelos.

23 CICLO DEL NITROGENO

24 Donde existe un exceso de materia orgánica, en condiciones anaerobias, hay otras bacterias que producen desnitrificación, convirtiendo los compuestos de N en N2, lo que hace que se pierda de nuevo nitrógeno del ecosistema a la atmósfera. A pesar de este ciclo, el N suele ser uno de los elementos que escasean y que es factor limitante de la productividad de muchos ecosistemas. Tradicionalmente se han abonado los suelos con nitratos para mejorar los rendimientos agrícolas. Durante muchos años se usaron productos naturales ricos en nitrógeno como el guano o el nitrato de Chile. Desde que se consiguió la síntesis artificial de amoniaco por el proceso Haber fue posible fabricar abonos nitrogenados que se emplean actualmente en grandes cantidades en la agricultura, su mal uso produce, a veces, problemas de contaminación en las aguas: la eutrofización.

25 FASES DEL CICLO DEL NITROGENO
Fijación Amonificación Nitrificación Desnitrificación

26

27 ACTIVIDAD

28 BIBLIOGRAFÍA Y WEBGRAFÍA
Ciclos Biogeoquímicos. Consultado en Junio del en: Ciclos Biogeoquímicos. Consultado en Junio del en: Ciclos Biogeoquímicos. Consultado en Junio del en: Flujo de Energía y Cadena Trófica. Consultado en Junio del en: LA CADENA ALIMENTARIA. Consultado en Junio del en: LA DINÁMICA DE LOSECOSISTEMAS. Consultado en Junio del en: LA  ENERGÍA EN LOS ECOSISTEMAS. Consultado en Junio del en: LA MATERIA Y LA ENERGÍA EN LOS ECOSISTEMAS. Consultado en Junio del en: Ciclo del Nitrógeno. Consultado en Junio del en:


Descargar ppt "Unidad III: Ecosistemas y Recursos naturales"

Presentaciones similares


Anuncios Google