La descarga está en progreso. Por favor, espere

La descarga está en progreso. Por favor, espere

Menú principal índice módulo Lentes astigmáticas MITO I Lentes astigmáticas o Definición sistema astigmático regular Definición sistema astigmático regular.

Presentaciones similares


Presentación del tema: "Menú principal índice módulo Lentes astigmáticas MITO I Lentes astigmáticas o Definición sistema astigmático regular Definición sistema astigmático regular."— Transcripción de la presentación:

1 Menú principal índice módulo Lentes astigmáticas MITO I Lentes astigmáticas o Definición sistema astigmático regular Definición sistema astigmático regular o Estudio del haz astigmático Estudio del haz astigmático o Relación entre la lente, las focales y el c.m.c. Relación entre la lente, las focales y el c.m.c. o Visión a través de un sistema astigmático Visión a través de un sistema astigmático o Compensación del astigmatismo Compensación del astigmatismo o Lentes cilíndricas Lentes cilíndricas o Lentes tóricas Lentes tóricas

2 Menú principal índice módulo Lentes astigmáticas Definición sistema astigmático regular Un eje rectilíneo normal a todos los dioptrios (condición de sistema centrado) Todo haz de rayos que parte de este eje, o que incide paralelo a este eje es transformado por el sistema en un haz no cónico (y sin simetría de revolución) que se apoya en dos pequeñas rectas perpendiculares entre sí que no se cortan pero sí que cortan al eje. Estas pequeñas rectas son las focales del haz astigmático, también llamadas focales de Sturm Un sistema astigmático regular se define como un sistema de dioptrios cualesquiera que poseen las dos propiedades siguientes:

3 Menú principal índice módulo Lentes astigmáticas Estudio del haz astigmático La línea focal correspondiente al meridiano vertical es horizontal, ya que la sección vertical solamente hace converger hacia el eje los rayos que le entran por arriba y por abajo Supongamos un sistema astigmático en el que la potencia del meridiano horizontal es superior a la del vertical P H >P V M V F V

4 Menú principal índice módulo Lentes astigmáticas Estudio del haz astigmático La línea focal correspondiente al meridiano horizontal es vertical, ya que la sección horizontal solamente hace converger hacia el eje los rayos que le entran por la derecha y por la izquierda M H F H Si consideramos ahora el meridiano perpendicular (en este ejemplo el de mayor potencia)

5 Menú principal índice módulo Lentes astigmáticas Estudio del haz astigmático Si combinamos los dos meridianos FHFH FVFV MHMH MVMV Forma de la sección del haz refractado Elipse vertical: el meridiano horizontal converge más deprisa Focal de Sturm vertical (en este caso anterior) Circulo de menor confusiónFocal de Sturm horizontal Elipse horizontal

6 Menú principal índice módulo Lentes astigmáticas Relación entre la lente, las focales y el c.m.c. L1L1 L2L2 C1C1 C2C2 FVFV FHFH L C De la geometría de esta figura se deduce fácilmente la expresión: P H + P V = 2/LC Luego la posición del CIRCULO DE MENOR CONFUSIÓN (LC) es la media armónica entre las posiciones de las dos líneas focales

7 Menú principal índice módulo Lentes astigmáticas Visión a través de un sistema astigmático Supongamos un objeto formado por una serie de puntos en forma de cruz En la FOCAL DE STURM vertical (anterior en el ejemplo visto), cada punto de la cruz tendrá como imagen una pequeña recta vertical En el CIRCULO DE MENOR CONFUSIÓN cada punto de la cruz tendrá como imagen un círculo En la FOCAL DE STURM horizontal (posterior en el ejemplo visto), cada punto de la cruz tendrá como imagen una pequeña recta horizontal

8 Menú principal índice módulo Lentes astigmáticas Compensación del astigmatismo Posición de la retina Y Z Clasificación del astigmatismo en función de la posición de las focales del ojo en relación a la retina. Astigmatismo hipermetrópico compuesto Todas las posiciones de la retina que se muestran corresponden a astigmatismo directo Meridiano horizontal del ojo menor potencia astigmatismo directo. Astigmatismo hipermetrópico simple Astigmatismo mixto Astigmatismo miópico simple Astigmatismo miópico compuesto

9 Menú principal índice módulo Lentes astigmáticas Compensación del astigmatismo El astigmatismo se compensa como una ametropía doble, considerando que, en cada meridiano principal, el foco imagen de la lente compensadora coincide con el PR (un sujeto astigmático tendrá dos puntos remotos para cada una de las dos direcciones o meridianos principales del ojo). Un punto en el infinito será conjugado de la retina en los dos meridianos principales y, en consecuencia, el astigmatismo del haz refractado será cero.

10 Menú principal índice módulo Lentes astigmáticas Compensación del astigmatismo No debemos deducir que la compensación hace al ojo anastigmático. En particular el tamaño de la imagen retiniana varía un poco siguiendo uno de los meridianos principales. Las dimensiones de la imagen retiniana tras la compensación serán: En primera aproximación se cumplirá que: R y +P y = R z +P z Si además u y = u z (objeto de la misma dimensión en todos sus meridianos),llegamos a la expresión: Se puede deducir que la imagen retiniana presentará un alargamiento en la dirección del meridiano menos potente del ojo, es decir en la dirección del meridiano de la lente más potente

11 Menú principal índice módulo Lentes astigmáticas LENTES CILÍNDRICAS o Superficies cilíndricas Superficies cilíndricas o Lentes planocilíndricas Lentes planocilíndricas o Lentes esferocilíndricas Lentes esferocilíndricas o Lentes bicilíndricas Lentes bicilíndricas o Transposiciones Transposiciones Práctica de transposiciones

12 Menú principal índice módulo Lentes astigmáticas Superficies cilíndricas Un CILINDRO es una superficie generada por la rotación de una línea recta alrededor de otra línea recta paralela a la primera que se denomina eje de revolución. AR es la línea generatriz y XX' el eje de revolución del cilindro. El eje es el lugar geométrico de los centros de todas las secciones circulares o paralelos de la superficie. Cuando un plano corte al cilindro oblicuamente a sus bases las secciones serán elípticas. generatriz paralelo Eje meridiano X X A R A las secciones del cilindro por planos que pasan por el eje del mismo se les denomina meridianos.

13 Menú principal índice módulo Lentes astigmáticas Lentes planocilíndricas Si seccionamos un cilindro mediante un plano paralelo al eje del cilindro se obtendrá una lente planocilíndrica. Las secciones paralelas a la base tienen forma de arcos de circunferencia de radio igual al de la base del cilindro. Las secciones oblicuas son un arco de elipse. A D C BB D A C

14 Menú principal índice módulo Lentes astigmáticas Lentes planocilíndricas. Potencia Según el eje de la lente la potencia es nula debido a que esta sección no es más que una lámina plano-paralela. D C A B En cambio, según el contraeje la potencia es máxima (en valor absoluto), y se puede considerar como la de una lente plano- esférica que tenga el mismo radio de curvatura que el radio de la base del cilindro. D C A B Por esta razón, a la sección del eje del cilindro también se la conoce como sección inactiva

15 Menú principal índice módulo Lentes astigmáticas Lentes planocilíndricas. Potencia oblicua Según un meridiano oblicuo, diferente de los meridianos principales, la potencia de la lente dependerá del ángulo que forme el meridiano considerado con el eje del cilindro y la potencia del contraeje. El valor que vamos a buscar es un valor aproximado ya que solo podemos hablar de potencia exacta para los meridianos principales. Supongamos la lente planocilíndrica, definida por sus dos meridianos principales MM y NN y con su eje orientado en la dirección vertical. La curvatura según un meridiano XX' será elíptica, pero en las lentes oftálmicas el volumen de cilindro utilizado es pequeño por lo que se puede aproximar a un arco de circunferencia. Considerando que la sagita s se mantiene constante para cualquier arco, utilizando la aproximación de Rayleigh (s= x 2 /2r) se puede poner: donde r C es el radio del contraeje y r θ es el radio del meridiano oblicuo, y dado que, Se obtiene finalmente la siguiente expresión para la potencia oblicua

16 Menú principal índice módulo Lentes astigmáticas Lentes planocilíndricas. Espesor Dado que los radios de curvatura de una lente planocilíndrica son diferentes en sus múltiples meridianos, el espesor de borde de estas lentes varía desde un espesor mínimo hasta uno máximo. Eje CxCc Así, en las lentes planocilíndricas positivas o convexas el espesor de borde es mayor en la dirección del eje que en el contraeje. En las lentes planocilíndricas negativas o cóncavas el espesor de borde es mayor en la dirección del contraeje.

17 Menú principal índice módulo Lentes astigmáticas Lentes planocilíndricas. Propiedades ópticas Las secciones de una superficie cilíndrica perpendiculares al eje del cilindro, son secciones esféricas de la misma potencia que la del cilindro con sus focos separados unos de otros según la dirección paralela al eje, formando todos estos puntos focales una recta paralela al eje denominada línea focal. Un haz plano de rayos normales a la cara plana de una lente planocilíndrica es transformado en un haz prismático cuya arista es paralela al eje de la lente. Si la cara cilíndrica es convexa la arista es real y si es cóncava la arista es virtual. Linea focal Esta arista es la LINEA FOCAL y se obtiene por superposición de los puntos focales. Además, todo el meridiano del eje tiene comportamiento de centro óptico.

18 Menú principal índice módulo Lentes astigmáticas Visión a través de una lente planocilíndrica Supongamos que tenemos un cuadrado que observamos a través de una lente planocilíndrica convexa con el eje vertical. La altura del objeto (dimensión paralela al eje) no se verá modificada pero la anchura (dimensión paralela al contraeje) será mayor. Si la lente fuera planocilíndrica cóncava la anchura de la imagen sería menor.

19 Menú principal índice módulo Lentes astigmáticas Lentes esferocilíndricas Una lente esferocilíndrica está formada por dos superficies, una esférica y otra cilíndrica. Existen cuatro combinaciones posibles: ESF Cc CIL Cc ESF Cc CIL Cx ESF Cx CIL Cc ESF Cx CIL Cx Uno de sus meridianos principales está definido por el plano que contiene el eje de revolución de la cara cilíndrica y el centro geométrico de la cara esférica. El otro meridiano principal es el plano perpendicular al eje de revolución del cilindro que pasa por el centro geométrico de la cara esférica. A estos dos meridianos principales se les denomina eje y contraeje respectivamente

20 Menú principal índice módulo Lentes astigmáticas Lentes esferocilíndricas. Potencia Siguiendo la dirección del eje la sección es plano-esférica. Como en esa dirección la potencia de la superficie cilíndrica es nula, se tiene como potencia principal únicamente la potencia de la superficie esférica E. Por el contrario en la dirección del contraeje, la sección es un menisco y la potencia total es la suma de la potencia esférica y de la cilíndrica. E CE P e = E P C = E + C Finalmente para conocer la potencia de un meridiano oblicuo, sumaremos a la potencia de la esfera la potencia oblicua de la cara cilíndrica: C sen 2 E P = E + C sen 2

21 Menú principal índice módulo Lentes astigmáticas Lentes esferocilíndricas. Fórmula óptica La forma de expresar las lentes esferocilíndricas es (E) (C) (C) (E) La orientación del eje,, se mide por el sistema TABO Ojo derechoOjo izquierdo

22 Menú principal índice módulo Lentes astigmáticas Lentes esferocilíndricas. Propiedades ópticas Por ejemplo, supongamos que tenemos la lente: (+5.00)(+3.00)0º +5 Superficie esférica +3 Superficie cilíndrica Lente esferocilíndrica P 0º =+5.00D P 90º =+8.00D

23 Menú principal índice módulo Lentes astigmáticas Lentes esferocilíndricas. Propiedades ópticas La posición de las focales de la lente, es la inversa de las potencias anteriores (+5.00)(+3.00)0º F 0º F 90º 125 mm 200 mm

24 Menú principal índice módulo Lentes astigmáticas Lentes bicilíndricas Las lentes bicilíndricas son lentes astigmáticas que se pueden considerar compuestas por dos lentes planocilíndricas unidas por sus caras planas. Estas lentes se formulan indicando los dos cilindros con sus ejes respectivos, unidos mediante el símbolo de combinación, de la siguiente manera: C 1 α 1 C 2 α 2 Aunque en principio los dos ejes α 1 y α 2 pueden formar entre sí un ángulo cualquiera, hay dos disposiciones particulares, que sean paralelos o que sean perpendiculares.

25 Menú principal índice módulo Lentes astigmáticas Dos lentes planocilíndricas con los ejes paralelos, son equivalentes a una lente planocilíndrica única cuyos meridianos principales, eje y contraeje, coinciden con los meridianos principales de las planocilíndricas componentes. De esta forma la potencia siguiendo el eje de la lente bicilíndrica es cero, y la potencia del contraeje es igual a la suma algebraica de los cilindros. C 1 α C 2 α C 3 α, donde C 3 = C 1 + C 2 Un caso particular se da cuando además de ejes paralelos, los cilindros poseen potencias iguales pero de signo contrario, pues la lente bicilíndrica equivale en este caso a una lente de potencia nula. Lentes bicilíndricas

26 Menú principal índice módulo Lentes astigmáticas Dos lentes planocilíndricas con los ejes perpendiculares, son equivalentes a un sistema astigmático regular donde el eje de una de las componentes coincide con el contraeje de la otra. C 1 α C 2 α ± 90º La potencia total de la lente en la dirección αº es C 2, mientras que la potencia total en la dirección perpendicular α±90º es C 1 Lentes bicilíndricas

27 Menú principal índice módulo Lentes astigmáticas Transposiciones Supongamos que estamos en presencia de un ojo astigmático que tiene una potencia de 64D en el meridiano vertical y 62D en el horizontal. Supongamos también que para que este ojo pueda ver nítidamente hay que dejar su potencia por ejemplo en 60D, después de la compensación Si tenemos una caja de pruebas constituida por lentes esféricas y planocilíndricas probamos para el ojo con una lente esférica de -4D. Esta lente que es la indicada para el meridiano vertical disminuye en exceso la potencia del meridiano horizontal. Será necesario añadir además una lente planocilíndrica de (+2.00)90º 64-4= = =60 Luego la primera solución se escribirá: (-4)(+2)90º

28 Menú principal índice módulo Lentes astigmáticas Transposiciones Ahora bien supongamos que en primer lugar cogemos una lente esférica de –2.00D, que es conveniente para el meridiano horizontal del ojo = =60 60 Luego la segunda solución se escribirá: (-2)(-2)0º Esta lente es insuficiente para el meridiano vertical. En este caso necesitaremos además una lente planocilíndrica de -2D con el eje horizontal.

29 Menú principal índice módulo Lentes astigmáticas Transposiciones Podemos buscar una tercera solución únicamente cogiendo de la caja de pruebas lentes planocilíndricas = =60 Luego esta última solución se escribirá: (-4)0º (-2)90º

30 Menú principal índice módulo Lentes astigmáticas Transposiciones Luego para una misma compensación tenemos tres soluciones posibles de lentes con diferentes asociaciones de superficies (dos lentes esferocilíndricas y una lente bicilíndrica). Sabemos que todas estas lentes tienen las mismas potencias principales: -4D en el meridiano de 90º -2D en el meridiano de 0º La transposición es simplemente la operación de encontrar una lente de forma diferente a una dada pero equivalente en potencias, que significa que tiene las mismas potencias principales.

31 Menú principal índice módulo Lentes astigmáticas LENTES TÓRICAS o Superficies tóricas Superficies tóricas o Lentes esferotóricas Lentes esferotóricas o Transposiciones Transposiciones Práctica de transposiciones

32 Menú principal índice módulo Lentes astigmáticas Superficies tóricas Las superficies tóricas se generan por la rotación de una circunferencia o arco de circunferencia alrededor de un eje de rotación contenido en su plano, pero que no pasa por el centro de curvatura del arco. x x O A C B ecuador menor r ecuador mayor R

33 Menú principal índice módulo Lentes astigmáticas Superficies tóricas r es el radio de la circunferencia cuyo centro describe a su vez otra circunferencia de radio R y centro O perpendicular a su plano. La recta xx perpendicular al círculo de radio R es eje geométrico o eje de revolución del toroide. x x O A C B ecuador menor r ecuador mayor R

34 Menú principal índice módulo Lentes astigmáticas Superficies tóricas El punto A describe la mayor circunferencia y se llama ecuador mayor mientras que el punto B describe la menor circunferencia y se llama ecuador menor x x O A C B ecuador menor r ecuador mayor R

35 Menú principal índice módulo Lentes astigmáticas Superficies tóricas Estos dos ecuadores están situados los dos en el plano que es perpendicular al eje de revolución y que pasa por el centro, C, del círculo generador; a dicho plano se le llama plano ecuatorial del toroide. x x O A C B ecuador menor r ecuador mayor R

36 Menú principal índice módulo Lentes astigmáticas Superficies tóricas La curvatura de una superficie tórica varía desde un mínimo en una sección principal, hasta un máximo en la otra. Ambas secciones principales que se denominan meridiano y ecuador, forman entre sí un ángulo de 90º. x x O A C B ecuador menor r ecuador mayor R

37 Menú principal índice módulo Lentes astigmáticas Superficies tóricas El meridiano está determinado por el radio de curvatura r del arco generador, y en el ecuador el radio de curvatura R corresponde al radio de la circunferencia descrita por las extremidades A o B del diámetro del círculo generador, contenido en el plano ecuatorial. x x O A C B ecuador menor r ecuador mayor R

38 Menú principal índice módulo Lentes astigmáticas Superficies tóricas En consecuencia hablaremos de dos potencias principales asociadas a dichos radios principales x x O A C B ecuador menor r ecuador mayor R Potencia ecuatorialPotencia meridional

39 Menú principal índice módulo Lentes astigmáticas Superficies tóricas En cuanto a las formas tenemos en principio cuatro posibilidades dentro de dos casos posibles: 1. El circulo generador no corta al eje de revolución

40 Menú principal índice módulo Lentes astigmáticas Superficies tóricas 2. El eje de revolución xx' corta al círculo al que pertenece el arco generador. x x r R r R x x TOROIDE EN CALABAZATOROIDE EN BARRIL En función de la relación entre M y E elegiremos un tipo u otro. Prácticamente todas las superficies tóricas que se fabrican son en anillo y en calabaza (el toroide en corsé no se emplea nunca y en barril rara vez)

41 Menú principal índice módulo Lentes astigmáticas Se denomina base de una lente tórica a la potencia principal de la cara tórica que es menor en valor absoluto, es decir, la correspondiente al mayor radio de curvatura. Para los toroides en anillo y en calabaza la base está en el ecuador y para los toroides en corsé y en barril sucede lo contrario, la base está en el meridiano. Lentes esferotóricas. Formas. Base Una lente esferotórica es una lente formada por una superficie tórica y una superficie esférica. El centro de la esfera está situado en el plano ecuatorial del toroide. Las combinaciones que se hacen de estas lentes (para garantizar la forma de menisco) son: Una cara tórica convexa está siempre asociada a una cara esférica cóncava. La lente se denomina tórica externa. Una cara tórica cóncava está siempre asociada a una cara esférica convexa. La lente se denomina tórica interna. Los meridianos principales de una lente esferotórica son los meridianos principales del dioptrio tórico, el ecuador y el meridiano, y para ello es necesario colocar el centro de curvatura de la superficie esférica en la intersección de ambos meridianos.

42 Menú principal índice módulo Lentes astigmáticas El eje de un dioptrio tórico se define como aquella sección principal cuya potencia es la base. Asimismo denominaremos eje y contraeje de una lente tórica, al eje y contraeje del dioptrio tórico. Lentes esferotóricas. Eje y contraeje P eje = S + B P ceje = S + M Seciones principales lente tórica interna Contraeje Eje SMSB

43 Menú principal índice módulo Lentes astigmáticas Transposiciones Hemos visto que las potencias principales de una lente tórica son: S + B S + M Siendo S, la potencia de la superficie esférica, B la de la base del toroide y M la del meridiano más cerrado del toroide. Si lo que queremos es averiguar cuál es la lente esferocilíndrica equivalente, lo que hay que hacer es igualar estas potencias a las potencias principales de la lente esferocilíndrica equivalente. Como tenemos para la determinación de la lente tórica tres incógnitas: B, M y S y solo dos ecuaciones, deberemos previamente fijar el valor de la base del toroide. ejemplos

44 Menú principal índice módulo Lentes astigmáticas Comparativa potencias Test autoevaluación problemas frontofocómetro esferómetro espesores


Descargar ppt "Menú principal índice módulo Lentes astigmáticas MITO I Lentes astigmáticas o Definición sistema astigmático regular Definición sistema astigmático regular."

Presentaciones similares


Anuncios Google